变限积分一般不需要直接求,一般用到的是变限积分的导数等于被积函数。
I = ∫<0, x>√(1+sin2t)dt =∫<0, x>√[(sint+cost)^2]dt = ∫<0, x>|sint+cost|dt
= √2∫<0, x>|sin(t+π/4)|dt
2kπ ≤ t+π/4 ≤ 2kπ+π, 2kπ-π/4 ≤ t ≤ 2kπ+3π/4 ,
I = √2∫<0, x>sin(t+π/4)dt = √2[-cos(t+π/4)]<0, x> = 1-√2cos(x+π/4)
2kπ+π ≤ t+π/4 ≤ 2kπ+2π, 2kπ+3π/4 ≤ t ≤ (2k+1)π+3π/4 ,
I = -√2∫<0, x>sin(t+π/4)dt = √2[cos(t+π/4)]<0, x> = √2cos(x+π/4)-1
合并 I = |1-√2cos(x+π/4)|
这种变上限积分,一般是用来求导数的, 不是要积出来吧。
∫<0,x>[√(1+sin2x)]dx=∫<0,x>[√(sinx+cosx)²]dx=∫<0,x>∣sinx+cosx∣dx
【当x=π/2时】=∫<0,π/2>(sinx+cosx)dx=[-cosx+sinx]<0,π/2>=1+1=2;
“0到x”,上限和被积函数的自变量一样?