A={x|x^2-2x-3>0},x²-2x-3>0(x+1)(x-3)>0x<-1或x>3B={x|x-5ax+4a^2≤0}(x-a)(x-4a)≤01. a>0a≤x≤4a因为A∩B={x|3<x≤4}所以4a=4a=1成立2. a=0,显然不成立3. a<04a≤x≤aa=4 矛盾所以a=1