求解答一道高中数学题。需要解答过程的。谢谢

2024-12-04 07:13:29
推荐回答(1个)
回答1:

1.
a1+2a2+3a3+....+nan=(n-1)Sn+2n

a1+2a2+3a3+....+nan+(n+1)a(n+1)=nS(n+1)+2(n+1)=n[Sn+a(n+1)]+2n+2

两式相减有
(n+1)a(n+1)=Sn+n*a(n+1)+2

(n+1)a(n+1)-n*a(n+1)-2=Sn

a(n+1)-2=Sn
an-2=S(n-1)
所以
a(n+1)-an=an
a(n+1)=2an
数列{an}为以2为公比的等比数列

a1=2
an=2^(n-1)*a1=2^n

2.
p,q,r成等差数列,所以p+r=2q

(ap-1)(ar-1)=(2^p-1)(2^r-1)=2^(p+r)-(2^p+2^r)+1=2^(2q)-(2^p+2^r)+1
(aq-1)²=(2^q-1)²=2^(2q)-(2*2^q)+1

由于p+r=2q,且p≠r,所以2^p+2^r>2*根号(2^p*2^r)=2根号(2^2q)=2*2^q
因此
(ap-1)(ar-1)<(aq-1)²

所以
ap-1,aq-1,ar-1无法构成等比数列

很高兴为您解答,祝学习进步!
有不明白的可以追问!
如果您认可我的回答,请点击下面的【选为满意回答】按钮,谢谢