设f(x)=e^x对任意b>0,f(x)在[0,b]连续,在(0,b)可导。根据中值定理,存在0显然,f(u)=e^u>=1 -> (f(b)-f(0))/(b-0)>1 -> f(b)>b+1 -> e^b>b+1 -> b>ln(1+b)即对任意x>0,有x>ln(1+x)