投影法又称为穿针法或先一后二法,即将三重积分化为先一次积分后二重积分,最终化为三次积分来计算,它的适用条旦码孙件是积分区域在某个坐标面(如xoy面)上的投影区域容易确定,而且过投影区域上任意一点做模大垂直于模链该坐标面的直线穿过积分区域时,穿进和穿出的曲面方程易知;截面法又称为切片法或先二后一法,即将三重积分化为先二重积分后一次积分,最终化为三次积分来计算,它的适用条件是被积函数只跟一个变量(如z)有关,用平行于xoy面的平面截积分区域时,截面的面积易知,此时用截面法最为简单。