解答:
解:(1)把点A(1,-k+4)分别代入反比例函数y=k/x与一次函数y=x+b,
解得:k=2,b=1,
∴两个函数的表达式为:y=2/x,y=x+1.
{y=2/x
y=x+1,解得:x=1,y=2,或者x=-2,y=-1,
∴这两个函数图象的另一个交点B的坐标为(-2,-1);
∴n=-2
(2) 过点A作AC⊥x轴 垂足为C 过点B作BD⊥x轴 垂足为D;
一次函数与x轴交点处为E;
当y=0时,一次函数y=x+1,
0=x+1 解得x=-1
∴E点坐标为(-1,0)
∵A(1,2) B(-2,-1)
∴OE=1,AC=2 , BD=1
∴S△AOB=S△AOE+S△BOE
=(AC×OE)/2 + (BD×OE) /2
=2×1 /2 + 1×1 /2
=3/2
(3)由图象可知:当反比例函数的值大于一次函数的值时,x的取值范围是x<-2或0<x<1
谢谢
把点A的坐标代入Y=K/X得K=2 反比例函数的图象在一三象限,又一次函数的斜率为1所以不可能在第一象限有二个交点,所以题目有问题