单个放射性核素的衰变规律

2024-11-28 11:45:12
推荐回答(1个)
回答1:

天然放射性核素的衰变,都是自发的原子核内部的反应,与其周围的物理、化学、压力等外界无关。任何单一放射性核素的衰变,它的数量随时间增加而逐渐减少。实验证明,在t到t+dt的时间里,原子的衰变数dN正比于t时间尚未衰变的原子总数N。其微分表达式为

-dN=λNdt

放射性勘探技术

式中:λ——比例常数,称为衰变常数,表示单位时间内元素衰变的几率,单位为s-1、d-1、a-1等。

式(1-1)右边的负号表示N值随时间增加而减少,亦即dN是负的。

假定起始时(t=0)有N0个原子,经过t时刻后有N个原子未衰变,那么对式(1-1)积分,并取积分限t从0→t,原子数N从N0→N,则

放射性勘探技术

式(1-2)告诉我们,放射性核素的原子数N,随着时间t的增长而呈指数规律衰减。此式对所有已知的放射性核素的衰变规律都是正确的。若以lnN对时间t为坐标作图就得到一条直线,如图1-11所示。直线与横坐标夹角为φ,tanφ=λ,即直线的斜率为衰变常数λ。

图1-11 放射性元素衰变曲线图

放射性原子核衰变是个随机过程,式(1-2)所描述的是一个统计规律。一种放射性核素的全部原子核不是同时衰变,而是有先有后。对某一确定的原子核来说,事先并不知道它在何时衰变,但是从统计观点看,每个原子在单位时间里衰变几率是一定的,就是衰变常数λ。由(1-1)式可得

放射性勘探技术

式(1-3)说明,单位时间内衰变的原子数dN/dt与现有原子数N之比,即为衰变常数。可见衰变常数λ是描述放射性核素衰变速度的。λ愈大说明该核素衰变得愈快,反之,衰变得愈慢。每个放射性核素的λ是不相同的,如氡的衰变常数λRn=2.1×10-6s-1,镭的衰变常数λRa=1.37×10-11s-1

除了衰变常数λ外,通常还用半衰期T1/2来描述放射性核素的衰变速度。所谓半衰期,是指放射性核素原子数目衰减到原来数目一半所需要的时间。它与衰变常数有如下关系:

从半衰期的定义出发,当t=T1/2时,则

,根据式(1-2),将t=T1/2,

代入式(1-2),得

放射性勘探技术

两边取自然对数:

放射性勘探技术

不难看出半衰期(T1/2)与衰变常数λ成反比关系。由某核素的半衰期能算出该核素的衰变常数。

一定量的某种放射性核素的原子,经过一个半衰期,原子数目衰变掉一半,经过两个半衰期,还剩下原来原子数目的1/4。那么要经过多长时间才能衰变完呢?从理论上说,要经过无限长时间。但实际上当残留的原子数为起始原子数的1/1000时,就可认为衰变完了。由此可算得这个时间:

放射性勘探技术

可见,一种放射性核素经过10倍半衰期,衰变为原来的

,不足原来的1/1000,可以认为衰变完了。显然,利用这个结论只有不足千分之一的误差。

在放射性测量实际工作中,有时还用到“原子平均寿命τ”,表示放射性核素衰变速度,τ与λ和T1/2之间有一定关系:

放射性勘探技术