∵1+tanA/tanB=2c/b,
∴结合正弦定理,容易得出:1+tanA/tanB=2sinC/sinB,
∴tanA+tanB=2sinC/sinB]tanB,
∴sinA/cosA+sinB/cosB=2sinC/cosB,
∴(sinAcosB+cosAsinB)/(cosAcosB)=2sinC/cosB,
∴sin(A+B)/cosA=2sinC,
∴sin(180°-C)/cosA=2sinC,
∴sinC/cosA=2sinC,
显然,sinC>0,
∴1/cosA=2,
∴cosA=1/2,
∴∠A=60°.