齐次方程通解是y=C/x,将C换成u,则xy=u,有du=xdy+ydx,所以du/dx=xdy/dx+y
又dy/dx=1/x²-y/x=1/x²-u/x²,代入上式,
du/dx=1/x-u/x+u/x=1/x
所以u=ln|x|+C=xy
又当x=1时y=0,得C=0,所以y=ln|x|/x
通解?
dy/dx+y/x=0
dy/y=-dx/x
lny=-lnx+lnC
y=C/x
一阶线性微分方程,通解是
y = e^(-∫dx/x) [∫(1/x^2)e^(∫dx/x)dx + C]
= (1/x) [∫dx/x + C] = (1/x)(ln|x| + C)
y(1) = 0 代人,得 C = 0,则特解是 y = ln|x|/x
唉,难办难办