已知a+b+c=1 求证:ab+bc+ac≤1⼀3

在线等
2024-11-27 23:40:15
推荐回答(2个)
回答1:

a+b+c=1

(a+b+c)^2 = 1

a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = 1..........(1)

又因为(a - b)^2 + (b - c)^2 +(a - c)^2 >= 0

a^2 + b^2 + c^2 >= ab + bc + ac ..............(2)

把(2)代入(1)得

3(ab + bc + ac )<= a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = 1

即 3(ab + bc + ac )<= 1

则 ab + bc + ac <= 1/3

回答2:

(a-b)^2≥0 a^2+b^2≥2ab
(b-c)^2≥0 b^2+c^2≥2bc
(a-c)^2≥0 a^2+c^2≥2ac

因此a^2+b^2+c^2≥ab+bc+ca

(a+b+c)^2=1=a^2+b^2+c^2+2ab+2bc+2ca≥3ab+3bc+3ca

因此3ab+3bc+3ac≤1

ab+bc+ac≤1/3