目前最高难度的我只接触到二阶常系数非齐次线性方程。更难的需要工科兄弟们补充了,文科甚至理科已经无能为力。
首先是1阶微分方程。这是最简单的形式。
1阶微分方程分为3种类型:
类型一:可分离变量的微分方程,它的形式如下:
dx/x=dy/y
总之是可以把x和y分开并且x与ds放到一边,y与dy放到等号另一边。
这种微分方程是可以直接积分求解的,
∫dx/x = ∫dy/y => ln|x| = ln|y| + lnC
C是任意常数。永远要知道的是,微分方程有多少阶,就有多少个任意常数。一阶微分方程只有一个任意常数C。
类型二:齐次微分方程
这样的微分方程的特点是(x^2+y^2)dx=(xy)dy括号内的项次数都相同。这个式子里括号内的次数都是2次。它是可以转化为第一种类型来求解的。转化的方法是设u=y/x,把原式的未知项都变成y/x的形式:(x/y + y/x)=dy/dx,然后代入u=y/x(注意:y=ux, 因此dy/dx=xdu/dx + u。这个也要代入),然后按照可分离变量类型的齐次方程求解。
类型三:一阶线性方程
一阶线性方程的特点是形式为y'+p(x)y=q(x),其中p(x)和q(x)都是x的函数。它主要是公式法求解。公式为y=[exp-∫p(x)dx]{∫q(x)[exp∫p(x)dx]dx}
二阶微分方程就更复杂了,3种形式的通解,3种形式的特解,特解里面还要考虑3种不同形式的未知项,所以在此不阐述。
目前
高难度
我
接触
二阶
系数非齐
线性
程
更难
需要工科兄弟
补充
文科甚至理科已经
能
力
首先
1阶微
程
简单
形式
1阶微
程
3种类型:
类型
:
离变量
微
程
形式
:
dx/x=dy/y
总
x
y
并且x与ds放
边
y与dy放
等号另
边
种微
程
直接积
求解
∫dx/x
=
∫dy/y
=>
ln|x|
=
ln|y|
+
lnC
C
任意
数
永远要知道
微
程
少阶
少
任意
数
阶微
程
任意
数C
类型二:齐
微
程
微
程
特点
(x^2+y^2)dx=(xy)dy括号内
项
数都相同
式
括号内
数都
2
转化
第
种类型
求解
转化
设u=y/x
原式
未知项都变
y/x
形式:(x/y
+
y/x)=dy/dx
代入u=y/x(注意:y=ux,
dy/dx=xdu/dx
+
u
要代入)
按照
离变量类型
齐
程求解
类型三:
阶线性
程
阶线性
程
特点
形式
y'+p(x)y=q(x)
其
p(x)
q(x)都
x
函数
主要
公式
求解
公式
y=[exp-∫p(x)dx]{∫q(x)[exp∫p(x)dx]dx}
二阶微
程
更复杂
3种形式
通解
3种形式
特解
特解
面
要考虑3种
同形式
未知项
所
阐述
用不定积分
如原函数的微分方程为Y’=2X+3,\
则原函数为:Y=X^2+3X+C(C为常数).
你的问题太笼统,建议去看微分方程方面的资料。
解这个微分方程,你的问题太笼统,建议去看微分方程方面的资料。