已知椭圆C1:y2a2+x2b2=1(a>b>0)的右顶点为P(1,0),过C1的焦点且垂直长轴的弦长为1.(Ⅰ)求椭圆

2024-11-02 16:10:14
推荐回答(1个)
回答1:

(I)由题意得

b=1
2?
b2
a
=1
,解得
a=2
b=1

∴所求的椭圆方程为
y2
4
+x2=1

(II)令A(x1x12+h),B(x2x22+h)
设切线AQ方程为y?(x12+h)=k(x?x1),代入y=x2+h,得:x2?kx+kx1?x12=0
令△=0,可得k=2x1
∴抛物线C2在点A处的切线斜率为k=2x1
∴切线AQ方程为:y?(x12+h)=2x1(x?x1),即y=2x1x?x12+h  ①
同理可得BQ方程为:y=2x2x?x22+h  ②
联立①②解得Q点为(
x1+x2
2
x1x2+h)

焦点F坐标为(0,h+
1
4
),令l方程为:y=kx+h+
1
4
,代入C2:y=x2+h
得:x2?kx?
1
4
=0
,由韦达定理有:x1+x2=k,x1x2=?
1
4

∴Q点为(
k
2
,h?
1
4
)

过Q作y轴平行线交AB于M点,则S△ABQ
1
2
|QM||x1?x2|

M点为(
k
2
k2
2
+h+
1
4
)

|QM|=
k2+1
2
|x1?x2|=
(x1+x2)2?4x1x2
k2+1

S△ABQ
1
2
|QM||x1?x2|=
1
4
(
k2+1
)3

而Q点在椭圆上,∴
(h?
1
4
)2
4
+(
k
2
)2=1
,∴k2=4?(h?
1
4
)2∈[0,4]

(S△ABQ)min
1
4
,此时k=0,h=
9
4
或-
7
4

则抛物线方程为:y=x2+
9
4
y=x2?
7
4

(S△ABQ)max
5