(I)由题意得
,解得
b=1 2?
=1b2 a
,
a=2 b=1
∴所求的椭圆方程为
+x2=1;y2 4
(II)令A(x1,x12+h),B(x2,x22+h),
设切线AQ方程为y?(x12+h)=k(x?x1),代入y=x2+h,得:x2?kx+kx1?x12=0.
令△=0,可得k=2x1.
∴抛物线C2在点A处的切线斜率为k=2x1.
∴切线AQ方程为:y?(x12+h)=2x1(x?x1),即y=2x1x?x12+h ①
同理可得BQ方程为:y=2x2x?x22+h ②
联立①②解得Q点为(
,x1x2+h).
x1+x2
2
焦点F坐标为(0,h+
),令l方程为:y=kx+h+1 4
,代入C2:y=x2+h,1 4
得:x2?kx?
=0,由韦达定理有:x1+x2=k,x1x2=?1 4
.1 4
∴Q点为(
,h?k 2
).1 4
过Q作y轴平行线交AB于M点,则S△ABQ=
|QM||x1?x2|.1 2
M点为(
,k 2
+h+k2 2
),1 4
|QM|=
,|x1?x2|=
k2+1 2
=
(x1+x2)2?4x1x2
.
k2+1
∴S△ABQ=
|QM||x1?x2|=1 2
(1 4
)3.
k2+1
而Q点在椭圆上,∴
+((h?
)2
1 4 4
)2=1,∴k2=4?(h?k 2
)2∈[0,4].1 4
∴(S△ABQ)min=
,此时k=0,h=1 4
或-9 4
,7 4
则抛物线方程为:y=x2+
或y=x2?9 4
.7 4
(S△ABQ)max=5