x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
由x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2)-z(x^2+y^2)-x(y^2+z^2)-y(x^2+z^2)
x^3+y^3+z^3-3xyz=……=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
X^3+Y^3+Z^3-3XYZ
=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
因为对称,其中一个因子必然是x+y+z,,直接用多项式除法除得结果
x^3+y^3+z^3-3xyz
=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)