一道初二数学竞赛几何证明题,急~

2024-12-03 19:28:21
推荐回答(4个)
回答1:

其实比较简单。
先在HN上找一点G使AG=CQ,只要证明BG=BQ。
BG^2-AG^2=BH^2-AH^2=(BH-AH)(BH+AH)=AB*(BH-RH)=AB*BR,容易知道三角形ABC相似于三角形BPR,所以BR*AB=BP*BC,所以(BG-AG)(BG+AG)=(BG-CQ)(BG+CQ)=BP*BC。把BG当作未知量,CQ,BP*BC当作已知量。BG^2-CQ^2=BP*BC这个关于BG的一元二次方程有2个解且互为相反数。因此正解只有一个。注意到若BG=BQ则(BG-CQ)(BG+CQ)=(BQ-PQ)*BC=BP*BC满足方程,所以BG=BQ是该方程的唯一解即BG=BQ。
我觉得我说得很清楚了。

回答2:

太难了,无能无力

回答3:

晕,看错线了
xruox是正确的,
最后一点没表述好,但是完全可以理解

回答4:

这题目关键是要先假设G存在证明当BG=BQ时候AG=CQ,然后再证明BQ大于等于BH(大角对大边)使得G点肯定存在。。。。具体证明我仔细看下。。。