∵AD平分∠CAB交BC于点D ∴∠CAD=∠EAD ∵DE⊥AB ∴∠AED=∠C=90 ∵AD=AD ∴△ACD≌△AED.(AAS) ∴AC=AE,CD=DE ∵∠C=90°,AC=BC ∴∠B=45° ∴DE=BE ∵AC=BC,AB=6cm, ∴2BC 2 =AB 2 ,即BC=
∴BE=AB-AE=AB-AC=6-3
∴BC+BE=3
∵△DEB的周长=DE+DB+BE=BC+BE=6(cm). 另法:证明三角形全等后, ∴AC=AE,CD=DE. ∵AC=BC, ∴BC=AE. ∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm. 故选B. |