无限区间上的积分或无界函数的积分,这两类积分叫作广义积分,又名反常积分. 1.无限区间上的积分 一般地,我们有下列定义 定义6.2 设函数f(x)在区间[a,+∞)上连续,取t>a,如果极限 当t→+∞时lim∫f(x)dx (t为上限,a为下限)存在,就称此极限值为函数f(x)在无穷区间[a,+∞)上的广义积分.记作∫f(x)dx(+∞为上限,a为下限) 即 ∫f(x)dx(+∞为上限,a为下限)=lim(t→+∞)∫f(x)dx(t为上限,a为下限) ( 6.24 ) 这时我们说广义积分∫f(x)dx(+∞为上限,a为下限) 存在或收敛; 如果 不存在,就说函数f(x)在无穷区间[a,+∞)的反常积分没有意义或发散 类似地,可以定义 在区间(-∞,b]及取t