第一:设未知数,一般是两个,设为x,y
第二:根据等量关系,列方程组,一般题目有两个已知条件,根据已知条件列方程组
第三:解方程组,是分式方程的要验根
第四:写明答话
另外:附解答应用题心得
1、读懂题意,把不相关的语言精简掉,现在应用题考得不是数学,而是语文的阅读能力,还要有转化问题的能力。
2、巧设未知数。一道应用题中可以把几个量都设为未知数,但是哪一个更为简便,要仔细斟酌。例如:甲乙二人速度之比为3:2,在求甲乙的速度时,我们可以设甲的速度为a千米/小时,乙为b千米/小时,这就是二元一次方程组;或者设甲的速度为a千米/小时,则乙为2/3a千米/小时,这样虽然是一元一次方程,但是有分数;或者设甲的速度为3a千米/小时,乙的速度为2a千米/小时
可见最后的设法最好。根据不同的题目设出未知数。
3、根据等量关系列出方程
4、解方程。此时我们可能会遇到二个未知数,而只能列出一个方程,我们就要看看是不是还有隐含条件,比如人数、物体的个数,都要是正整数,这就是隐含条件,尤其在不等式方程中要用到。还有就是分式方程要验根
5、写清单位和答话。这一步往往被忽视,其实这一步恰恰反映出你是否读懂了题目,是否知道题目要求的是什么,在考试中是要站分数的。
6、勤加练习,熟能生巧。触类旁通,举一反三。
在这种多元一次方程组应用题中,首先要找出未知的量,在这题中未知的量有:
1.每头牛每天吃多少草:a
2.牧场本身有多少草:b
3.草的生长速度是多少:y
4.至多能放几头牛:
x
一般情况下,有多少个未知量就应该有多少个方程式,这题指明要二元一次,但是我推荐用三元或四元会更加方便
既然如此,我们就可以得出以下方程:
21(头牛)*8(天)*a(每头牛每天吃的量)=b(牧场本身的量)+8(天)y(每天长出的量)
24*6*a=b+6y
从这两个个方程组,我们可以直接消去x,即得到:
y=12a
因为要使牧场的草可以永远吃不完,也就是说,牛消耗的量和草生长的量必须一致,那么我们又可以得出这个方程:
y(牧场一天长出的量)=
x(牛的数量)*a(每头牛每天吃的量)
将这个方程和前面得出的方程放在一起,即:
y=12a
y=xa
我们就可以得出
x=12
注:如果必须要用二元一次方程,则可以将这个题目分成两部分做:
设每头牛每天吃一个单位的草
设牧场本身有x量的草
设每天牧场长出y量的草
方程就是:
21*8*1=x+8y
24*6*1=x+6y
得出y=12,即牧场每天长出12个单位的草
那么因为每头牛每天消耗1个单位的草,所以,最多可以放:12/1=12头牛
1.二元一次方程4x-3y=12,当x=0,1,2,3时,y=______.
2.在x+3y=3中,若用x表示y,则y=______,用y表示x,则x=______.
4.把方程3(x+5)=5(y-1)+3化成二元一次方程的一般形式为______.
(1)方程y=2x-3的解有______;
(2)方程3x+2y=1的解有______;
(3)方程y=2x-3与3x+2y=1的公共解是______.
9.方程x+y=3有______组解,有______组正整数解,它们是______.
11.已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2.当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程.
12.对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=______;当y=0时,则x=______.
13.方程2x+y=5的正整数解是______.
14.若(4x-3)2+|2y+1|=0,则x+2=______.
的解.
当k为______时,方程组没有解.
______.
(二)选择
24.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则[ ]
A.y=5x-3;
B.y=-x-3;
D.y=-5x-3.
[ ]
26.与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是[ ]
A.10x+2y=4;
B.4x-y=7;
C.20x-4y=3;
D.15x-3y=6.
[ ]
A.m=9;
B.m=6;
C.m=-6;
D.m=-9.
28.若5x2ym与4xn+m-1y是同类项,则m2-n的值为 [ ]
A.1;
B.-1;
C.-3;
D.以上答案都不对.
29.方程2x+y=9在正整数范围内的解有[ ]
A.1个;
B.2个;
C.3个;
D.4个.
[ ]
A.4;
B.2;
C.-4;
D.以上答案都不对.
二元一次方程组•综合创新练习题
一、综合题
【Z,3,二】
【Z,3,二】
3.已知4ax+yb2与-a3by是同类项求2x-y的值.
【Z,3,二】
4.若|x-2|+(2x-3y+5)2=0,求x和y的值.
【N,3,三】
5.若方程2x2m+3+3y5n-4=7是x,y的二元一次方程组,求m2+n的值.
【Z,3,二】
二、创新题
1.已知x和y互为相反数,且(x+y+4)(x-y)=4,求x和y的值.
【N,4,三】
2.求方程x+2y=7在自然数范围内的解.
【N,4,三】
三、中考题
(山东,95,3分)下列结论正确的是
[ ]
参考答案及点拨
一、1.所考知识点:方程组的解及求代数式的值.
∴ 2m+3n=2×2+3(-3)=4-9=-5.
2.所考知识点:方程的解及解一元一次方程.
解:把 x=-3,y=-2代入方程,得 2(-3)-4(-2)+2a=3解关
点拨:以上两题考察的知识点类似,已知方程的解时,只要把这组数代入方程或方程组就可求出方程中其他字母的值.
3.所考知识点:同类项及解方程
点拨:根据同类项的定义知,相同字母的指数相同,故可列出方程,从而求解.
4.所考知识点:非负数的性质及解简单的二元一次方程组.
点拨:因|x-2|≥0,(2x-3y+5)2≥0,所以,当它们的和为零,这两个数都须是零,即x-2=0,2x-3y+5=0.
5.所考知识点:二元一次方程的定义.
解:由题意知
点拨:从二元一次方程的定义知,未知项的指数为 1,由此得到 2m+3=1, 5n-4=1.
二、1.所考知识点:相反数的意义及解简单的二元一次方程组.
解:由题意,得x+y=0,
又∵(x+y+4)(x-y)=4
∴ 4(x-y)=4
即x-y=1
2.所考知识点:二元一次方程的自然数解.
解:把方程x+2y=7变形,得x=7-2y
令y=1,2,3,4……,则x=5,3,1,-1……
点拨:二元一次方程的自然数解,就是未知数的值,都是自然数,首先将方程变形,用含一个字母的代数式表示另一个字母,再根据题目的特点求解.
三、所考知识点:二元一次方程组解的定义.
解:D
点拨:由二元一次方程组的定义知道,二元一次方程组的解,是方程组中每个二元一次方程组的解,故选D.
审题
找相等关系
设未知数
列方程
解这个方程
检查
找等量关系
设元
列方程
解方程
答句