已知0<b<派⼀2<a<派,且cos(a-b⼀2)=-1⼀9,sin(a⼀2-b)=2⼀3,求cos(a b)的值

2024-11-28 22:42:51
推荐回答(1个)
回答1:

解:∵0∴ -π/4<-b/2<0
则 π/4又 cos(a-b/2)=-1/9
∴ (a-b/2)为第二象限角
∴ sin(a-b/2)=4√5/9
同理,可得
(a/2-b)为第一象限角
cos(a/2-b)=√5/3
∵ cos(a/2+b/2)=cos[(a-b/2)-(a/2-b)]
=cos(a-b/2)*cos(a/2-b)+sin(a-b/2)*sin(a/2-b)
=(-1/9)×(√5/3)+(4√5/9)×(2/3)
=7√5/27
∴cos(a+b)=2cos²(a/2+b/2)-1
=2×(7√5/27)²-1
=-239/729