这是伪命题。举例:e^x,是R上的严格凸函数,但无极小值点。若改成:严格凸函数若存在极小值点,那么存在唯一极小值点。则成立。证法可以用反证法,按定义证明,注意不能用导数的证法,因为没说可导。
极小值点的要求是 该点附近左减又增,一个严格的凸函数 在R里有唯一一个极小值点 该点也是最小值点