求20道数学趣题,带答案!最好是初一难度的!

2024-12-01 18:17:55
推荐回答(2个)
回答1:

  1. 有人编写了一个程序, 从1开始, 交替做乘法或加法, (第一次可以是加法,也可以是乘法), 每次加法, 将上次运算结果加2或是加3;每次乘法,将上次运算结果乘2或乘3, 例如30, 可以这样得到: 1 +3 =4*2=8+2=10*3=30,请问怎样可以得到:2的100次+2的97次-2 

    解答:1+3=4+2=2的3次-2=2的3次+2-2=(2的3次+2-2)*2=……==2的100次+2的97次-2的97次=2的100次+2的97次-2的97次+2=2的100次+2的97次-2的97次+2+2=……=2的100次+2的97次-2 

    2.下诗出于清朝数学家徐子云的著作,请算出诗中有多少僧人? 
    巍巍古寺在云中,不知寺内多少僧。 
    三百六十四只碗,看看用尽不差争。 
    三人共食一只碗,四人共吃一碗羹。 
    请问先生明算者,算来寺内几多僧? 

    解答:三人共食一只碗:则吃饭时一人用三分之一个碗, 
    四人共吃一碗羹:则吃羹时一人用四分之一个碗, 
    两项合计,则每人用1/3+1/4=7/12个碗, 
    设共有和尚X人,依题意得: 
    7/12X=364 
    解之得,X=624 

    3.两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里? 

    解答:每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。 

    4.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。问雄、兔各几何? 

    解答:设x为雉数,y为兔数,则有 
    x+y=b, 2x+4y=a 
    解之得:y=b/2-a, 
    x=a-(b/2-a) 
    根据这组公式很容易得出原题的答案:兔12只,雉22只。 

    5.我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。 
    经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。 
    问题:我们该如何定价才能赚最多的钱? 

    解答:日租金360元。 
    虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。 

    6. 数学家维纳的年龄:我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 

    解答:设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=
    7.把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。 

    解答:663 

    8.在一幅长90厘米,宽40厘米的风景画的四周外围向上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的百分之72,那么金色纸边的宽应为多少? 

    解答:根据题意有(90+2X)(40+2X)*72%=90*40 
    (90+2X)(40+2X)=3600/0.72 
    3600+180X+80X+4X2=5000 
    4X2+260X-1400=0 
    (4X-20)(X+70)=0 
    得 4x-20=0 X+70=0 
    4*x=20 X=5 
    X=-70 不成立 
    所以X=5CM 

    9.用黑白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑白皮块32块,请计算,黑色皮块和白色皮块的块数 

    解答:等量关系: 
    白色皮块中与黑色皮块中共用的边数=黑色皮块中与白色皮块共用的边数 
    设:有白色皮块x 
    3x=5(32-x) 
    解得 x=20 

    10.抽屉中有十只相同的黑袜子和十只相同的白袜子,假若你在黑暗中打开抽屉,伸手拿出袜子,请问至少要拿出几只袜子,才能确定拿到了一双? 

    解答:3 

    11.小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”小钱说:“A队,C队胜于B队败会同时出现。”小孙说:“A队,B队C队都能胜。”小李说:“A队败,C队,D队胜的局面明显。” 
    他们的话中已说中了哪个队取胜,请问你猜对究竟哪个队夺冠吗? 

    解答:小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”小钱说:“A队,C队胜与B队败会同时出现。”小孙说:“A队,B队C队都能胜。”小李说:“A队败,C队,D队胜的局面明显。” 
    小赵的话说明 D队败 
    小钱的话说明 B队败 
    小孙的话说明 D队败 
    小李的话说明 A队败 
    所以,C队胜利 

    12.如果长度为a,b,c的三条线段能够成三角形,那麽线段根号a,根号b,根号c是否能够成三角形? 
    如果一定能构成或一定不能构成,请证明 
    如果不一定能够,请举例说明. 

    解答:可以。 
    不妨假设a最小,c最大,那么abc构成三角形的充要条件就是a+b>c; 
    这时√a+√b与√c比较,其实就是a+b+2√ab与c比较(两边平方),a+b已经大于c了,那么显然可以构成三角形。 

    13.有一位农民遇见魔鬼,魔鬼说:"我有一个主意,可以让你发财!只要你从我身后这座桥走过去,你的钱就会增加一倍,走回来又会增加一倍,每过一次桥,你的钱都能增加一倍,不过你必须保证每次在你的钱数加倍后要给我a个钢板,农民大喜,马上过桥,三次过桥后,口袋刚好只有a个钢板,付给魔鬼,分文不剩,请有含a的单项式表示农民最初口袋里的钢板数。 

    解答:设最初钱数为x 
    2[2(2x-a)-a]-a=0 
    解方程得x=7a/8 

    14.三个同学放学回家,途中见到一辆黄色汽车,等他们再往前走时,听说那辆车撞伤一位老人后竟然逃之夭夭.可是谁也没记下这辆汽车的车牌号.警察询问这三个中学生时,他们都说车牌号是一个四位数.其中一个记得这个号码的前两位相同,另一个记得这个号码的后两位数字相同,第三个记得这个四位数恰好是完全平方数,你能确定这辆肇事汽车的车牌号吗 

    解答:四位数可以表示成 
    a×1000+a×100+b×10+b 
    =a×1100+b×11 
    =11×(a×100+b) 
    因为a×100+b必须被11整除,所以a+b=11,带入上式得 
    四位数=11×(a×100+(11-a)) 
    =11×(a×99+11) 
    =11×11×(9a+1) 
    只要9a+1是完全平方数就行了。 
    由a=2、3、4、5、6、7、8、9验证得, 
    9a+1=19、28、27、46、55、64、73。 
    所以只有a=7一个解;b=4。 
    因此四位数是7744=11^2×8^2=88×88 

    15.已知1加3等于4等于2的2次方,1加3加5等于9等于3的2次方,1加3加5加7=16等于4的2次方,1加3加5加7加9等于25等于5的2次方,等...... 
    <1>仿照上例,计算1加2加3加5加7加...加99等于? 
    <2>根据上面规律,请用自然数n(n大于等于1)表示一般规律。 

    解答:<1>1+3+5+...+99=50的平方 
    <2>1+3+5+...+n=[(n-1)/2+1]的平方 

    16.有一次,一只猫抓了20只老鼠,排成一列。猫宣布了它的决定:首先将站在奇数位上的老鼠吃掉,接着将剩下的老师重新按1、2、3、4…编号,再吃掉所有站在奇数位上的老鼠。如此重复,最后剩下的一只老鼠将被放生。一只聪明的老鼠听了,马上选了一个位置,最后剩下的果然是它,猫将它放走了! 
    你知道这只聪明的小老鼠站的是第几个位置吗? 

    解答:排在第16个。第1次能被2整除的剩下了,第2次能被4(2的平方)整除的剩下了,第3次能被8(2的3次方)整除的剩下了,第4次能被16(2的4次方)整除的剩下了,所以只有第16个不会被吃掉。 

    17.1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100) 

    解答:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100) 
    =(1-1/2-1/3)+(1/2-1/3-1/4)+(1/3-1/4-1/5)+......1/98-1/99-1/100 
    =1-1/100 
    =99/100 
    备注:1/(1*2*3)=1-1/2-1/3 

    18.小伟和小明交流暑假中的活动情况,小伟说:“我参加了科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出发的吗?”小明说:“我假期到舅舅家住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的吗? 

    解答:第一题:设出发那天为X号 
    X+X+1+X+2+X+3+X+4+X+5+X+6=84 
    X=9 
    小伟是9号出发的。 
    第二题:因为是暑假里的活动,所以只能是7或者8月份 
    设回来那天为X号 
    列示为 
    7+X+X-1+X-2+X-3+X-4+X-5+X-6=84 
    或者 
    8+X+X-1+X-2+X-3+X-4+X-5+X-6=84 
    第一式解出X=14 
    第二式结果不为整数 
    所以只能是7月14号到家 

    19.某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,同时将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等。已知丙班第一组有2名女生,问甲、乙两班第一组各有多少女生? 

    解答:设甲乙两班第一组的女生分别有m和n个 丙班女生有x个乙班就有x+1个,甲班就有x+5个 平均x+2个 (利用改变量来计算)丙班:-2+n=(x+2)-x 
    甲班:+2-m=(x+2)-(x+5) 可以得出 m=5 n=4 

    20.有一水库,在单位时间内有一定量的水流量,同时也向外放水。按现在的放水量,水库中的水可使用40天。因最近库区降雨,使流入水库的水量增加20%,如果放水量也增加10%,那么仍可使用40天。问:如果按原来的放水量放水,可使用多少天? 

    解答: 设水库总水量为x 一天的进水量和出水量分别为m和n 
    则有x/(n-m)=40=x/[n(1+10%)-m(1+20%)] 要求x/[n-m(1+20%)] 
    可以先化简得n=2m x=40m 带入第二个式子即可得到x=50天 

回答2:

http://www.yzaoshu.com/article/showarticle.asp?articleid=49供参考