分部积分 ∫ x^3(1+x^2)^(1⼀2)

2025-03-29 02:19:49
推荐回答(2个)
回答1:

解:其实这一道题,如果不用分部积分法,用代换法更有效,当然了,分部积分法也可以,具体如下:

x^3(1+x^2)^(1/2)dx
=∫
x^2(1+x^2)^(1/2)×xdx=1/2∫
x^2(1+x^2)^(1/2)dx^2
=1/2∫
x^2(1+x^2)^(1/2)d(x^2+1)
=1/2∫
x^2×2/3d(x^2+1)^(3/2)
=1/3×x^2×(x^2+1)^(3/2)-1/3×∫
(x^2+1)^(3/2)dx^2
=1/3×x^2×(x^2+1)^(3/2)-1/3×∫
(x^2+1)^(3/2)d(x^2+1)
解:其实这一道题,如果不用分部积分法,用代换法更有效,当然了,分部积分法也可以,具体如下:

x^3(1+x^2)^(1/2)dx
=∫
x^2(1+x^2)^(1/2)×xdx=1/2∫
x^2(1+x^2)^(1/2)dx^2
=1/2∫
x^2(1+x^2)^(1/2)d(x^2+1)
=1/2∫
x^2×2/3d(x^2+1)^(3/2)
=1/3×x^2×(x^2+1)^(3/2)-1/3×∫
(x^2+1)^(3/2)dx^2
=1/3×x^2×(x^2+1)^(3/2)-1/3×2/5×(x^2+1)^(5/2)
=1/3×(x^2+1)^(3/2)(3/5x^2+2/5)+C(C为积分常数)

回答2:

解答:
本题不是分部积分的题目,而是第一类换元积分的题目,具体做法如下:

x^3(1+x^2)^(1/2)
dx=

x^2(1+x^2)^(1/2)*x
dx=1/2*∫
x^2(1+x^2)^(1/2)dx^2
=1/2*∫
[(x^2+1)^(3/2)-(x^2+1)^(1/2)]d(x^2+1)
=1/2*2/5*[(x^2+1)^(5/2)-1/2*2/3*[(x^2+1)^(3/2)+C
=1//5*[(x^2+1)^(5/2)-1/3*[(x^2+1)^(3/2)+C