初一下册数学难题

2024-12-03 00:53:09
推荐回答(3个)
回答1:

原式=(1-1/2²)(1-1/3²)……(1-1/2000²)

用平方差

=(1-1/2)(1+1/2)(1-1/3)(1+1/3)……(1-1/2000)(1+1/2000)

=(1/2)(3/2)(2/3)(4/3)……(1999/2000)(2001/2000)

中间约分

=(1/2)(2001/2000)
=2001/4000

回答2:

首先得知道a^(-2)=1/(a^2)
[1-(2 负2次方)][1-(3 负2次方)]……[1-(1999 负2次方)][1-(2000 负2次方)]
=[1-1/(2^2)][1-1/(3 ^2)]……[1-1/(1999 ^2)[1-1/(2000 ^2)]
={[1-1/2][1+1/2]}{[1-1/3][1+1/3]}​……{[1-1/1999][1+1/1999]}{[1-1/2000][1+1/2000]}
=(1/2)(3/2)(2/3)(4/3)……(1998/1999)(2001/1999)(1999/2000)(2001/2000)
从第二项开始,连续的两项相乘等于1
=(1/2)(2001/2000)
=2001/4000

回答3:

原式=(1+1/2)(1-1/2)*(1+1/3)(1-1/3)......(1+1/1999)(1-1/1999)*(1+1/2000)(1-1/2000)
=1/2*3/2*2/3*4/3*3/4*5/4*......*1998/1999*2000/1999*1999/2000*2001/2000
=1/2*2001/2000
=2001/4000