要点是把两个闭集上的二元函数转化到紧集上的一元函数
不妨设A是紧集, 那么可以定义f:A->R, f(x)=inf|x-Y|, Y∈B, 验证d(A,B)=inf f(x)=min f(x)即可
例子也不难举, 不过必须找无界闭集
A={(x,y): x>0, y>=1/x}
B={(x,y): x>0, y<=-1/x}
d(A,B)=0
如果是单身的连续性和完整性讨论,然后在复杂的域和实数域上的二维平面不作任何区别(因为你可以创建相应的措施),还具有以下性能相当:
闭集的连续性 - 康托集定理
凝聚力 - 波尔查诺 - 魏尔斯特拉斯定理
完整性 - 柯西收敛原理
(有界闭集)紧凑 - Heine-Borel定理
在这里,只要足够的数学分析。
如果你想讨论微积分,复变函数与真正的函数的二进制数是有本质区别的,楼上说的,你应该看一看复杂的功能。