1⼀2^2+1⼀3^2+1⼀4^2+......+1⼀n^2<1-1⼀n^2 用数学归纳证明。。。详细过程

2024-12-01 00:54:21
推荐回答(2个)
回答1:

1/2^2<1/1*2=1-1/2
1/3^2<1/2*3=1/2-1/3
.........
1/n^2<1/[n(n-1)]=1/(n-1)-1/n
左右全部相加
原式左边<1-1/n
用数学归纳证明:
n=2时,左边=1/2^2=1/4<1-1/2<1-1/2^2,成立
n=k时假设成立,有:
1/2^2+1/3^2+1/4^2+......+1/k^2<1-1/k<1-1/k^2
n=k+1时
1/2^2+1/3^2+1/4^2+...+1/k^2+1/(k+1)^2
<1-1/k+1/(k+1)^2
<1-1/k+1/[k(k+1)]
=1-1/k+[1/k-1/(k+1)]
=1-1/(k+1)
<-1/(k+1^2
所以,n=k+1时也成立
即有1/2^2+1/3^2+1/4^2+......+1/n^2<1-1/n^2

回答2:

是1/2²还是(1/2)²