y''-xf(x)y'+f(x)y=0
这是线性方程:y=x是解,下面用常数变易法
设y=cx, y'=c+c'x y''=2c'+c''x 代入
2c'+c''x-xf(x)(c+c'x)+f(x)cx=0
2c'+c''x-c'f(x)x^2=0
c''x+(2-f(x)x^2)c'=0,或:c''+(2/x-f(x)x)c'=0
解得:c'=C1e^(∫xf(x)dx)/x^2
c=C1∫[e^(∫xf(x)dx)/x^2]dx+C2
通解为:y={C1∫[e^(∫xf(x)dx)/x^2]dx+C2}x