∵π/2∴π/4∴sin(A-B/2)>0,cos(A/2-B)>0 ∵cos(A-B/2)=-1/9,sin(A/2-B)=2/3∴sin(A-B/2)=4√5/9,cos(A/2-B)=√5/3 sin(A/2+B/2)=sin[(A-B/2)-(A/2-B)]=sin(A-B/2)cos(A/2-B)-cos(A-B/2)sin(A/2-B)=(4√5/9)*(√5/3)-(-1/9)*(2/3)=22/27 cos(A+B)=1-2sin²(A/2+B/2)=-239/729