∫(cos^2x+sin^3x)dx=∫cos^2xdx+∫sinxsin^2xdx=∫(1/2)(1+cos2x)dx-∫sin^2xdcosx=(1/2)x+(1/4)∫cos2xd2x-∫(1-cos^2x)dcosx=(1/2)x+(1/4)sin2x-cosx+(1/3)cos^3x+c.