例1、5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=10+10
=20
例2、37.24+23.79-17.24
=37.24-17.24+23.79
=20+23.79
=43.79
例3、 4×3.78×0.25
=4×0.25×3.78
=1×3.78
=3.78
例4、 125×246×0.8
=125×0.8×246
=100×246
=24600
例5、(2.5+12.5)×40
=2.5×40+12.5×40
=100+500
=600
例6、3.68×4.79+6.32×4.79
=(3.68+6.32)×4.79
=10×4.79
=47.9
例7. 26.86×25.66-16.86×25.66
=(26.86-16.86) ×25.66
=10×25.66
=256.6
例8、 5.7×99+5.7
= 5.7×(99+1)
=5.7×100
=570
例9、34×9.9
=34×(10-0.1)
=34×10-34×0.1
=340-3.4
=336.6
例10、 57×101
=57×(100+1)
=57×100+57×1
=5757
例11、7.8×1.1
=7.8×(1+0.1)
=7.8×1+7.8×0.1
=7.8+0.78
=8.58
例12、25×32
=25×4×8
=100×8
=800
例13、125×0.72
=125×8×0.09
=1000×0.09
=90
例14、87×2/85
=(85+2) ×2/85
=85×2/85+2×2/85
=2+4/85
=2又4/85
例15、56.5-3.7-6.3
=56.5-(3.7+6.3)
=56.5-10
=46.5
例16、32.6÷0.4÷2.5
=32.6÷(0.4×2.5)
=32.6÷1
=32.6
例16、86.7×0.356+1.33×3.56
=8.67×3.56+1.33×3.56
=(8.67+1.33)×3.56
=10×3.56
=35.6
例17、15.6÷4-5.6×1/4
=15.6×1/4-5.6×1/4
=(15.6-5.6)×1/4
=10×1/4
=2又1/2
例18、16/23×27+16×19/23
=27/23×16+16×19/23
=16×(27/23+19/23)
=16×2例1、5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=10+10
=20
例2、37.24+23.79-17.24
=37.24-17.24+23.79
=20+23.79
=43.79
例3、 4×3.78×0.25
=4×0.25×3.78
=1×3.78
=3.78
例4、 125×246×0.8
=125×0.8×246
=100×246
=24600
例5、(2.5+12.5)×40
=2.5×40+12.5×40
=100+500
=600
例6、3.68×4.79+6.32×4.79
=(3.68+6.32)×4.79
=10×4.79
=47.9
例7. 26.86×25.66-16.86×25.66
=(26.86-16.86) ×25.66
=10×25.66
=256.6
例8、 5.7×99+5.7
= 5.7×(99+1)
=5.7×100
=570
例9、34×9.9
=34×(10-0.1)
=34×10-34×0.1
=340-3.4
=336.6
例10、 57×101
=57×(100+1)
=57×100+57×1
=5757
例11、7.8×1.1
=7.8×(1+0.1)
=7.8×1+7.8×0.1
=7.8+0.78
=8.58
例12、25×32
=25×4×8
=100×8
=800
例13、125×0.72
=125×8×0.09
=1000×0.09
=90
例14、87×2/85
=(85+2) ×2/85
=85×2/85+2×2/85
=2+4/85
=2又4/85
例15、56.5-3.7-6.3
=56.5-(3.7+6.3)
=56.5-10
=46.5
例16、32.6÷0.4÷2.5
=32.6÷(0.4×2.5)
=32.6÷1
=32.6
例16、86.7×0.356+1.33×3.56
=8.67×3.56+1.33×3.56
=(8.67+1.33)×3.56
=10×3.56
=35.6
例17、15.6÷4-5.6×1/4
=15.6×1/4-5.6×1/4
=(15.6-5.6)×1/4
=10×1/4
=2又1/2
例18、16/23×27+16×19/23
=27/23×16+16×19/23
=16×(27/23+19/23)
=16×2
=32
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc

例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
答:有什么问题吗
答:看看我能不能解决
问:解方程的基本性质是什么
答:含有未知数的等式叫方程等式的基本性质1:等式两边同时加〔或减〕同一个数或同一个代数式,所得的结果仍是等式用字母表示为:若a=b,c为一个数或一个代数式.则:〔1〕a+c=b+c〔2〕a-c=b-c等式的基本性质2:等式的两边同时乘或除以同一个不为0的的数所得的结果仍是等式3若a=b,则b=a(等式的对称性)4若a=b,b=c则a=c(等式的传递性)方程:含有未知数的等式叫做方程方程的使方程左右两边相等的未知数的值叫做方程的解解方程:求方程的解的过程叫做解方程移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1
0.25×1.25×32
=(0.25×4)×(1.25×8)
=1×10
=10
1. 5/2 -( 3/2 + 4/5 )
2. 7/8 + ( 1/8 + 1/9 )
3. 5/6 + ( 1/2 + 2/3 )
4. 9/7 - ( 2/7 - 10/21 )
5. 3/7 + 49/9 + 4/7
6. 8/9 + 15/36 + 3/27
7. 5/2 - ( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9/7 - ( 2/7 - 10/21 )
10. 1/5 + ( 3/7 + 8/10 )
11、13/8-(5/6+5/8)
12、5/7+6/11+2/7+3/11
13、3-3/7-4/7
14、7/8+3/8+1-1/3
15、3/7+1/6+4/7
16、7/9+5/8-1/9-1/8
17、1/3+5/8-1/8+2/3
18、1-5/8-3/8
19、4/5+4/7-4/5
20、1/4+1/3+3/4+2/3