数学中a包含于b什么意思

2024-11-15 06:01:46
推荐回答(5个)
回答1:

这是集合相关的概念。

一般,我们用大写字幕表示集合,比如A、B等,而用小写字母表示元素,比如a、b等。

当然,集合本身也可以是另一个集合的元素。

若集合A中的所有元素都是集合B中的元素,则称集合A为B的子集,符号为A⊆ B或B⊇A,读作A包含于B或B包含A。即:∀a∈A有a∈B,则A⊆B。

根据子集的定义,我们知道A⊆A。也就是说,任何一个集合是它本身的子集。

对于空集∅,我们规定∅⊆A,即空集是任何集合的子集。

真子集:

如果集合A是B的子集,且A≠B,即B中至少有一个元素不属于A,那么A就是B的真子集,可记作:A⊊B。

扩展资料:

若 A,B,C是集合,则:

自反性: A⊆A,反对称性: A⊆ B且 B⊆ A,当且仅当A= B,传递性: 若 A⊆ B且 B⊆ C则 A⊆ C。这个命题说明:对任意集合 S,S的幂集按包含排序是一个有界格,与上述命题相结合,则它是一个布尔代数。

若 A,B,C是集合 S的子集,则:

存在一个最小元和一个最大元: ∅ ⊆ A⊆ S( ∅⊆A由命题2给出)。存在并运算: A⊆ A∪B若 A⊆ C且 B⊆ C则 A∪B⊆ C存在交运算: A∩B⊆ A若 C⊆ A且 C⊆ B则 C⊆ A∩B。这个命题说明:表述 "A⊆ B" 和其他使用并集,交集和补集的表述是等价的,即包含关系在公理体系中是多余的。

空集是任意集合的子集。

证明:给定任意集合A,要证明∅是A 的子集。这要求给出所有∅的元素是A 的元素;但是,∅没有元素。

对有经验的数学家们来说,推论 “∅没有元素,所以∅的所有元素是A 的元素”是显然的;但对初学者来说,有些麻烦。 换一种思维将有所帮助,为了证明∅不是A 的子集,必须找到一个元素,属于∅,但不属于A。因为∅没有元素,所以这是不可能的。因此∅一定是A 的子集。

这个命题说明:包含是一种偏序关系。

参考资料:百度百科---子集

参考资料:百度百科---真子集

回答2:

对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,也说集合A是集合B的子集。如B包含A,说明A是B的子集;或如A包含于B,也说明A是B的子集。

如果集合A的任何一个元素都是集合B的元素,而集合B中至少有一个元素不属于集合A,则称集合A是集合B的真子集。空集是任何集合的子集。 任何一个集合是它本身的子集.空集是任何非空集合的真子集。

注意问题

谈起子集,特别要注意的是空集,记住空集是任何集合的子集,而不是任何集合的真子集,如空集就不是空集的真子集,故空集是任何非空集合的真子集。

然后要知道,如果一个集合的元素有n个,那么它的子集有2的n次方个(注意空集的存在),.非空子集有2的n次方减1个,真子集有2的n次方减1个,非空真子集有2的n次方减2个。

回答3:

⊆是包含于符号:A包含于B-则A为B的子集或等于B。

包含:对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集。 记作: A⊆B(或B⊇A) 读作:“A包含于B”(“B包含A”)。此时,A就是属于B。

真包含的言外之意就是真子集。如果集合A⊆B,但存在元素X∈B,且元素X不属于集合A,我们称集合A是集合B的真子集。 也就是说如果集合A的所有元素同时都是集合B的元素,则称A是B的子集, 若B中有一个元素,而A 中没有,且A是B的子集,则称A 是B的真子集。

集合的特性:

1、确定性

给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

2、互异性

一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

3、无序性

一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。

回答4:

这是集合相关的概念

一般,我们用大写字幕表示集合,比如A、B等,而用小写字母表示元素,比如a、b等

当然,集合本身也可以是另一个集合的元素

若集合A中的所有元素都是集合B中的元素,则称集合A为B的子集,符号为A⊆ BB⊇A,读作A包含于BB包含A。即:∀a∈A有a∈B,则A⊆B

根据子集的定义,我们知道A⊆A。也就是说,任何一个集合是它本身的子集

对于空集∅,我们规定∅⊆A,即空集是任何集合的子集

真子集

如果集合A是B的子集,且A≠B,即B中至少有一个元素不属于A,那么A就是B的真子集,可记作:A⊊B

如上面的文氏图中,集合A就是集合B的真子集

回答5:

子集与包含关系

B的子集A
定义:
集合A,B,若∀a∈A,有a∈B∴A⊆B。则称A是B的子集,亦称A包含于B,或B包含A,记作A⊆B。
若A⊆B,且A≠B,则称A是B的真子集,亦称A真包含于B,或B真包含A,记作A⊂B。
望采纳