标准正态分布(英语:standard normal distribution, 德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。
定义:
标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。
标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。
统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。
正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。
我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布(见下图中绿色曲线)。
拓展资料:
标准偏差:
深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。
在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。
若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。
称为“68-95-99.7法则”或“经验法则”。
参考资料:标准正态分布-百度百科
正态分布(又名高斯分布),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。其概率密度函数为
此即正态分布函数,期望值μ决定了其位置,标准差σ决定了分布的幅度。
标准正态分布是正态分布的一种特殊情况,通常所说的标准正态分布是指μ = 0,σ = 1的正态分布。其表达式为
其数学意义是,测量数据与期望值的偏差在期望值的左右两边按指数律对称分布。
正态分布的图像如下所示,上图为一般正态分布,下图为标准正态分布。
就是a=1,u=0的函数