通项为n⼀(n+1)(n+2)(n+3),求前n项和

2024-11-28 17:45:05
推荐回答(1个)
回答1:

令An=n/(n+1)(n+2)(n+3)
=a/(n+1) + b/(n+2) + c/(n+3)
通分,比较系数,
可以得到
a+b+c=0,
5a+4b+3c=1
6a+3b+2c=0,
解得a= -0.5,b=2,c= -1.5
所以
An= -1/(2n+2) +2/(n+2) -3/(2n+6),

An= 1.5×[1/(n+2) -1/(n+3)] - 0.5×[1/(n+1) -1/(n+2)]

A1=1.5×(1/3 -1/4) - 0.5×(1/2 -1/3)
A2=1.5×(1/4 -1/5) - 0.5×(1/3 -1/4)
A3=1.5×(1/5 -1/6) - 0.5×(1/4 -1/5)
……
An= 1.5×[1/(n+2) -1/(n+3)] - 0.5×[1/(n+1) -1/(n+2)]

将其对应相加,
得到前n项和
Sn=1.5× [ 1/3-1/4+1/4-1/5+1/5-1/6+…+1/(n+2) -1/(n+3) ]
-0.5× [1/2-1/3+1/3-1/4+1/4-1/5+…+1/(n+1) -1/(n+2)]

将其对应项逐个消去,
得到
Sn= 1.5×[1/3 - 1/(n+3) ] - 0.5×[1/2 -1/(n+2) ]
化简并通分后得到,
Sn= 1/4 - (2n+3) / (2n²+10n+12)