x-2=2cost,y=2sint,t位于【-pi,pi】,dx=-2sintdt,dy=2costdt,ds=根号【(dx)^2+(dy)^2】=2dt,于是积分变为
积分(从-pi到pi)根号(4(2+2cost))*2dt
=4积分(从-pi到pi)根号(4cos^2(t/2))dt
=16积分(从0到pi)cos(t/2)dt
=32sin(t/2)|上限pi下限0
=32
∫√(x²+y²)ds,其中L为圆x²+y²=4x的一周
解:由x²+y²=4x,得x²-4x+y²=(x-2)²+y²=4,故可设x=2+2cost,y=2sint,dx=-2sintdt,dy=2costdt
ds=√(dx²+dy²)=[√(4sin²t+4cos²t)]dt=2dt
故‹L›∫√(x²+y²)ds=[-π,π]∫{√[(2+2cost)²+(2sint)²]}2dt=[-π,π]2∫[√(8+8cost)]dt
=[-π,π]4(√2)∫[√(1+cost)]dt=[-π,π]4(√2)∫√[2cos²(t/2)]dt=[-π,π]8∫cos(t/2)dt
=[-π,π]16∫cos(t/2)d(t/2)=16[sin(t/2)]︱[-π,π]=16[sin(π/2)-sin(-π/2)]=32
x^2+y^2=4x化为标准型为:(x-2)²+y²=4,
则参数方程为:x=2+2cost,y=2sint,t:-π-->π,ds=√[(x')²+(y')²]dt=2dt
则:∫(x²+y²)^(1/2)ds
=∫[-π-->π](4+8cost+4cos²t+4sin²t)^(1/2)*2dt
=∫[-π-->π](8+8cost)^(1/2)*2dt
=4∫[0-->π](8+8cost)^(1/2)dt
=4∫[0-->π](16cos²(t/2))^(1/2)dt
=16∫[0-->π](cos²(t/2))^(1/2)dt
=16∫[0-->π]cos(t/2)dt
=32sin(t/2)
[0-->π]
=32