以三阶矩阵为例:设A为三阶矩阵,它的三个特征值为m1,m2,m3,其对应的线性无关的特征向量为a1,a2,a3,则Aai=miai(i=1,2,3),所以A(a1,a2,a3)=(m1a1,m2a2,m3a3)=(a1,a2,a3)diag{m1,m2,m3}令P=(a1,a2,a3),B=diag{m1,m2,m3},则AP=PB,由a1,a2,a3线性无关可知P可逆,从而A=PBP^(-1)
简单分析一下,详情如图所示