(I)由已知,f(0)=0,f′(x)=
,且f′(0)=0…3分(1?2λ)x?λx2
(1+x)2
若λ<
,则当0<x<2(1-2λ)时,f′(x)>0,所以当0<x<2(1-2λ)时,f(x)>0,1 2
若λ≥
,则当x>0时,f′(x)<0,所以当x>0时,f(x)<01 2
综上,λ的最小值为
…6分1 2
( II)令λ=
,由(I)知,当x>0时,f(x)<0,即1 2
>ln(1+x)x(2+x) 2+2x
取x=
,则1 k
>ln(2k+1 2k(k+1)
)…9分k+1 k
于是a2n-an+
=1 4n
+1 n+1
+…+1 n+2
+1 2n
1 4n
=
+1 2(n+1)
+1 2(n+1)
+1 2(n+2)
+1 2(n+2)
+…+1 2(n+1)
+1 4n
+1 4n
1 4n
=
+1 2n
+1 2(n+1)
+1 2(n+1)
+1 2(n+2)
+1 2(n+2)
+…++1 2(n+3)
+1 2(2n?1)
+1 2(2n?1)
1 4n
=
2n?1