转基因技术是生命科学前沿的重要领域之一。自从人类耕种作物以来 , 我们的祖先就从未停止过作物的遗传改良。过去的几千年里农作物改良的方式主要是对自然突变产生的优良基因和重组体的选择和利用 , 通过随机和自然的方式来积累优良基因。遗传学创立后近百年的动植物育种则是采用人工杂交的方法 , 进行优良基因的重组和外源基因的导入而实现遗传改良。因此 , 可以认为转基因技术是与传统技术一脉相承的 , 其本质都是通过获得优良基因进行遗传改良。但在基因转移的范围和效率上 , 转基因技术与传统育种技术有两点重要区别 , 第一 , 传统技术一般只能在生物种内个体间实现基因转移 , 而转基因技术所转移的基因则不受生物体间亲缘关系的限制 ; 第二 , 传统的杂交和选择技术一般是在生物个体水平上进行 , 操作对象是整个基因组 , 所转移的是大量的基因 , 不可能准确地对某个基因进行操作和选择 , 对后代的表现预见性较差。而转基因技术所操作和转移的一般是经过明确定义的基因 , 功能清楚 , 后代表现可准确预期。因此 , 转基因技术是对传统技术的发展和补充。将两者紧密结合 , 可相得益彰 , 大大地提高动植物品种改良的效率。
科学家发明转基因技术的初衷是想利用该技术造福人类 , 既可加快农作物和家畜品种的改良速度 , 提高人类食物的品质 , 又可以生产珍贵的药用蛋白 , 为患病者带来福音。比如说 , 抗虫的转基因玉米不会被虫咬 , 可以让人们放心食用 ; 将能产生人体疫苗的基因转入植物食品 , 人们就可以在食用食物的同时增加自身对疾病的抵抗力。
但是 , 人类对银肆自然界的干预是否会茄神造成潜在的尚不可能预知的危险 ? 大量转基因生物会不会破坏生物多样性 ? 转基因产品会颤搏亏不会对人类健康造成危害 ? 一些科学家们开始担心对生物、植物生命进行的 “ 任意修改 ”, 创造出的新型遗传基因和生物可能会危害到人类。它们可能会对生态环境造成新的污染 , 即所谓的遗传基因污染 , 而这种新的污染源很难被消除。还有 , 转基因农作物和以此为原材料制造的转基因食品对人体的影响也尚未有定论。
目前 , 国内外学者对转基因技术的负面影响也作了大量研究 , 出现了许多相关报道 , 如英国的权威科学杂志《自然》刊登了美国康奈尔大学副教授约翰 · 罗西的一篇论文 , 引起世界震惊。论文指出 , 研究人员在实验室里把抗虫害转基因玉米 “BT 玉米 ” 的花粉撒在苦苣菜叶上 , 然后让蝴蝶幼虫啃食这些菜叶。 4 天之后 , 有 44% 的幼虫死亡 , 活着的幼虫身体较小 , 并且没有精神。而另一组幼虫啃食撒有普通玉米花粉的菜叶 , 就没有出现死亡率高或发育不良的现象。论文据此推断 , BT 转基因玉米花粉中含有毒素。另据报道 , 英国伦理和毒性中心的实验报告说 , 与一般大豆相比 , 耐除草剂的转基因大豆中 , 防癌的成分异黄酮减少了。与普通大豆相比 , 两种转基因大豆中的异黄酮成分减少了 12% ~ 14%, 还有巴西坚果事件等。
面对国际上出现的种种关于转基因作物的争议 , 许多科学家、学术团体纷纷以各种形式发表对转基因技术的支持态度。由美国 Tuskegee 大学 Prakash 教授 2000 年 1 月起草的题为 “ 科学家支持农业生物技术的声明 ”, 已征集到世界上 3 000 多位科学家的签名 , 其中包括 DNA 双螺旋结构的发现者、诺贝尔奖得主 James Watson, 绿色革命的创始人、诺贝尔奖得主 Norman Borlaug, 世界粮食奖获得者、国际水稻研究所首席育种家 Gurdev Khush 。该声明称 , “ 对植物负责任的遗传修饰既不新也不危险。如抗病虫等诸多性状已通过有性杂交和细胞培养的方法经常性地引入作物中。与传统的方法相比较 , 通过重组 DNA 技术引入新的或不同的基因并不一定会有新的或更大的风险 , 且商品化的产品的安全性则由于目前的安全管理规则而得到了更进一步的保障。遗传新技术为作物改进提供了更大的灵活性和精确性。 ” 和现代任何一项工业技术一样 , 转基因技术也具有两面性 , 有长亦有短在发展转基因技术等生物技术时 , 应该扬长避短、趋利避害、规范管理 , 使转基因技术能够健康发展。
一、运用前景
基因工程自20世纪70年代兴起之后,经过二十多年的发展历程,取得了惊人的成绩,特别是近十年来,基因工程的发展更是突飞猛进。基因转移、基因扩增等技术的应用不仅使生命科学的研究发生了前所未有的变化,而且在实际应用领域——医药卫生、农牧业、食品工业、环境保护等方面也展示出美好的应用前景。
1、转基因技术与医药卫生
目前,转基因技术在医药卫生领域的应用非常广泛,主要包括以下两个方面。
(1)生产基因工程药品 如胰岛素、干扰素和乙肝疫苗等。基因工程药品是制药工业上的重大突破。例如,有人设想并正在试验将抗生素生产菌放线菌或霉菌的有关遗传基因转移至发酵时间更短、更易于培养的细菌细胞中;将动物或人产胰岛素的遗传基因转移型笑至酵母或细菌的细胞中;将家蚕产丝蛋白的基因引入细菌细胞中;把人或动物产抗体、干扰素、激素或白细胞介素(interleukin)等的基因转移至细菌细胞中;把不同病毒的表面抗原基因转移到细菌细胞中以生产各种疫苗;用基因工程手段提高各种氨基酸发酵菌的产量;构建分解纤维素或木质素以生产重要代谢产物的工程菌;以及用基因重组技术培育工业和医用酶制剂等高产菌的工作等。
这类工作如获成功,其经济效益将是十分显著的。例如,目前用100000克胰脏只能提取3~4g胰岛素,而用“工程菌”进行发酵生产,则只要用几升发酵液就可取得同样数量的产品。1978年,美国有两个实验室合作,使E.coli产生大白鼠胰岛素的研究已获成功。接着,又报道了通过基因工程使E.coli合成人胰岛素实验成功的消息。他们在实验室中曾将人胰岛素A、B两链的人工合成基因分别组合到E.coli的不同质粒上,然后再转移至菌体内。这种重组质粒可在E.coli细胞内进行正常的复制和表达,从而使带有A、B链基因的“工程菌”菌株分别产生人胰岛素的A、B链,然后再用人为的方法,在体外通过二硫键使这两条链连接成有活性的人腔租衡胰岛素。另外,在1977年,国外已利用基因工程技术,使E.coli生产出一种名为生长激素释放因子“SRIH”的动物激素(一种十四肽,能抑制其他激素的释放和治疗糖尿病等),它原来要从羊的脑下垂体中提取,宰50万头羊也只能提取5mg的产品,而现在只要用10L发酵液就可获得同样的产量。
近年来,应用遗传工程获得这类产品的例子正与日俱增,尤其是多肽类物质,如脑啡肽(大脑中的镇痛物质)、卵清蛋白(即“OV”,389肽)、干扰素(用于治疗病毒性感染)、胸腺素α-1(有免疫援助因子的作用,可治疗癌症)、乙型肝炎疫苗和口蹄疫病毒疫苗等。我国学者也急起直追,在脑啡肽、α-干扰素、γ-干扰素、人生长激素、乙型肝炎疫苗、含乙肝表面抗原基因的牛痘病毒株以及青霉素酰化酶等的基因工程研究中,取得了一系列令人鼓舞的成果。
(2)用于基因诊断与基因治疗 基因工程技术还可以直接用于基因的诊断和治疗。。目前用基因诊断方法已经能够检测出肠道病毒、单纯疱疹病毒等许多种病毒。
基因治疗是把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的。,如恶性肿瘤、艾滋病、心血管疾病,以及糖尿病等,也都可以被人类征服。
2、转基因技术与农牧业、食品工业
转基因技术在农牧业生产上的应用主要是培育高产、优质或具有特殊用途的动植物新品种。基因工程在农业方面的应用主要表现在两个方面。
首先,是通过基因工程技术获得高产、稳产和具有优良品质的农作物。例如,用基因工程的方法可以改善粮食作物的蛋白质含量。将固氮菌的固氮基因转移到生长在重要作物的根际微生物或致瘤微生物中去,或是干脆将它引入到这类作物的细胞中,以获得能独立固氮的新型伍做作物品种。
其次,是用基因工程的方法培育出具有各种抗逆性的作物新品种。自然界中细菌的种类是非常多的,在细菌身上几乎可以找到植物所需要的各种抗性,如抗虫、抗病毒、抗除草剂、抗盐碱、抗干旱、抗高温等。如果将这些抗性基因转移到作物体内,将从根本上改变作物的特性。
转基因技术在畜牧养殖业上的应用也具有广阔的前景,科学家将某些特定基因与病毒DNA构成重组DNA,然后通过感染或显微注射技术①将重组DNA转移到动物受精卵中。由这种受精 卵发育成的动物可以获得人们所需要的各种优良品质,如具有抗病能力、高产仔率、高产奶率和高质量的皮毛等。此外,转基因技术还可以为人类开辟新的食物来源。
3、转基因技术与环境保护
转基因技术可以用于环境监测基因工程还可以用于被污染环境的净化。造成环境污染的农药,并试图通过基因工程的方法回收和利用工业废物。凡此种种,都是一些可望取得成功和发展前景十分光明的研究课题。
在工业上,由于用微生物进行发酵生产要比在大田中进行农牧业生产具有许多优越性,因而它已成为农牧业发展的一个远景方向。而要实现这一目标,基因工程将是最有效的手段。
二、转基因食品的安全性
转基因食品安全性的提出1998 年,英国阿伯丁罗特研究所普庇泰教授的研究报道,幼鼠食用转基因土豆后, 会使内脏和免疫系统受损,这是对转基因食品提出了最早的, 所谓科学证据的质疑 。虽然1999 年5 月英国皇家学会宣布此项研究没有任何有力的证据,但它还是在全世界范围内引发了对转基因食品安全性的讨论。
外源基因的食用安全性 长期食用的历史证明, 食品中的DNA 及其降解产物对人体无毒害作用。任何基因都由4 种碱基组成,目前转基因食品中所使用的外源基因, 不管其来源如何,其组成与普通DNA 并无差异。此外,外源基因在转基因食品中的含量很小,例如通过食用转基因番茄而被摄入人体内的外源基因的数量不超过3. 3 ×10 - 4~10 ×10 - 4μg/ d , 可见通过食用转基因食品而摄入体内的外源基因的数量与消化道中持续存在的来源于其他食品中的DNA 数量相比是微不足道的。因此,转基因食品中的外源基因本身不会对人体产生直接毒害作用。
外源基因水平转移的可能性 转基因食品被食用后, 其中绝大部分DNA 早已被降解,并在肠胃中失活。那剩下的极少部分是否会水平转移呢? 例如转基因食品作物中含有抗生素抗性标志基因,它能否通过转基因食品传递给人畜肠道的微生物,并在其中表达, 影响人畜口服抗生素的药效呢? 这种可能性很小, 除非在特例中需加以考虑。因为DNA 转移并整合进入受体细胞是一个非常复杂的过程,要求DNA 必须与细胞结合且受体细胞必须呈感受态。消化系统中也没有DNA 转至微生物的机制,所以转基因食品中的新基因或活的转基因微生物将标志基因传递给人或家畜的肠道微生物,危害人或家畜的健康的可能性很小。
外源蛋白质的食用安全性外源蛋白质的安全性需考虑到其直接毒性、过敏性、因蛋白的催化功能而产生的副作用。引起食品过敏症的大多数转基因食品中都引入一种或几种蛋白质,它们在加工、烹调和食用过程中相对稳定,这些异种蛋白有可能引起食品过敏,特别是对儿童和过敏体质的成人。有报道,对巴西坚果过敏的人食用转入巴西坚果基因的大豆后发生过敏。目前被批准商业化生产的转基因食品中的外源基因都必须通过相关的试验,分析基因表达蛋白的化学组成、含量、每天摄入量以及在消化道的稳定性。例如转基因延熟番茄FLAVRSAVRTM 中外源基因编码产生的外源蛋白质经与有关的毒性蛋白质进行同源性比较, 未发现与已知的毒性蛋白质具有同源性 。由于外源基因含量很低,其编码的蛋白质数量也很小,只占番茄果实中总蛋白质含量的0. 08 %, 因此人体每天摄入的外源蛋白质的数量不超过25~74μg/ kg·d 。用该外源蛋白质进行小白鼠急性毒性试验的结果表明,饲喂量达500mg/ kg 体重时,未产生不利影响。所以从外源蛋白质的毒性方面看,食用转基因番茄FLAVRSAVRTM 不会产生安全性问题。此外,体外模拟试验证明, FLAVRSAVRTM 中外源蛋白质的稳定性较差,在模拟胃的条件下(pH1. 2 的胃蛋白酶溶液,37 ℃) ,该蛋白在10s 内即被降解,目前亦无证据说明该蛋白降解产生的多肽比其他蛋白降解后的多肽毒性大 。
转基因食品的其他安全性问题 转基因食品生产的每一个环节都有可能对食品的安全性产生影响, 基因多效性是最难控制的。另外,转基因技术能否对人类所处的生态环境、食物链等形成间接的影响也确实应该引起人们的注意。有报道,Bt 玉米分泌转基因表达的毒素至土壤, 其与土壤中颗粒结合并可在土壤中残留几个月 。另外,由于种植耐除草剂的转基植物后, 提高了农药的使用量,长久可出现耐受性强的杂草株 。从营养成分的基因改良角度考虑,转基因食品的氨基酸、碳水化合物、脂肪以及其它微量成分的种类及构成高分子物质的排列顺序有所变化,天然毒素的含量也可能发生变化,因此必须对转基因食品与常规食品的关键成分进行实质等同性鉴定,来判定其是否可以安全食用。
嘿嘿 我也正写这方面的作业呢 互相帮助
利处:通过转基因技术可以培养出新品种、抗药氏键森性、抗旱抗寒性品种、蛋白质和糖类含量高的品种、结果实多而大的品种等等。
弊端:转基因生物体内的基因容易造成基因污染,使得亮绝转歼亩基因生物大肆繁殖,争夺其他生物的营养物质和生存空间等等。
希望能帮助您。^__^