原式=∫(sinx^3)(cosx^2)dsinx
=∫(sinx^3)(1-sinx^2)dsinx
=∫(sinx^3-sinx^5)dsinx
=(sinx^4)/4-(sinx^6)/6
∫(sinx^3)×(cosx^3)dx
=∫(1/2sin2x)^3dx
=∫1/8(sin2x)^3dx
=∫-1/16(sin2x)^2dcos2x
=∫-1/16[1-(cos2x)^2]dcos2x
=-1/16[cos2x-1/3(cos2x)^3]
=-1/16cos2x+1/48(cos2x)^3