a1=1=2-1
a2=1+1/2=2-1/2
a3=1+1/2+1/2^=2-1/^2
a4=1+1/2+1/2^2+1/2^3=2-1/2^3
.......
an=1+1/2+1/2^2+1/2^3+...+1/2^n=2-1/2^n
前n项和Sn=(2-1)+(2-1/2)+(2-1/2^2)+.....+(2-1/2^n)
=2*n-(1+1/2+1/2^2+....+1/2^n)
=2n-(1-1/2^n)/(1-1/2)
=2n-2(1-1/2^n)
=2n-2+1/2^(n-1)
希望可以帮到你,^_^
an=2-(1/2)^(n-1)
所以Sn=2n-1/2-1/4-1/8-(1/2)^(n-1)
下面就会了吧
an=1+1/2+1/2^2+···+1/2^n=2-1/2^n,
∴数列{an}的前n项和=2n-(1/2+1/4+……+1/2^n)
=2n-(1-1/2^n)
=2n-1+1/2^n.
该数列的每一项都是以1为首项1/2为公比的等比数列 其通项为2-(1/2)^n-1 而这个可用分组求和法算出来 即拆成一个常数列和一个等比数列即可算出 结果为 2n-2+(1/2)^n-1