一道高数曲面积分问题(斯托克斯公式)

2024-11-14 23:23:44
推荐回答(1个)
回答1:

解:应该是②对。过程是,原式=lim(n→∞)∑(1/n)√[1+cos(kπ/n)],k=1,2,……,n。
根据定积分的定义,视“1/n”为dx、k/n为x【变化范围为(0,1]】,而π为常数,
∴原式=∫(0,1)√[1+cos(xπ)]dx。
另外,①中,如若视“π/n”为dx、“kπ/n”为x【变化范围为(0,π]】亦可。原式=lim(n→∞)(1/π)∑(π/n)√[1+cos(kπ/n)]=(1/π)∫(0,π)√(1+cosx)dx。这样与②有相同的结果。其解题过程中有所失误。】供参考。