题目有点问题,x应该趋于正无穷才对,单单说趋于无穷,极限是不存在的
x→+∞
lim (1+3^x+2^x)^(1/x)
=lim e^ln(1+3^x+2^x)^(1/x)
=e^lim ln(1+3^x+2^x)^(1/x)
考虑
lim ln(1+3^x+2^x)^(1/x)
=lim ln(1+3^x+2^x) / x
该极限为∞/∞型,根据L'Hospital法则
=lim ln(1+3^x+2^x)' / (x)'
=lim (ln3*3^x+ln2*2^x) / (1+3^x+2^x)
=lim (ln3*3^x+ln2*2^x)/3^x / (1+3^x+2^x)/3^x
=lim (ln3+ln2*(2/3)^x) / (1/3^x+1+(2/3)^x)
=(ln3+0) / (0+1+0)
=ln3
故,原极限=e^ln3=3