1*2+2*3+3*4+……+n(n+1)
=(1^2+1)+(2^2+2)+(3^2+3)+……+(n^2+n)
=(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n)
=[n(n+1)(2n+1)]/6 +[n(n+1)]/2
=[n(n+1)(5n+2)]/6
1*2+2*3+3*4+···100*101
=1^2+1+2^2+2+3^2+3+···+100^2+100
=1^2+2^2+···+100^2+1+2+···+100
利用下面公式
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6
1+2+3+···+n=n(n+1)/2
在上式中,n=100,代入得,
1*2+2*3+3*4+···100*101=100*101*201/6+100*101/2=343400