①∵AB=AC,
∴∠B=∠C,
又∵∠ADE=∠B
∴∠ADE=∠C,
∴△ADE∽△ACD;
故①正确,
②AB=AC=10,∠ADE=∠B=α,cosα=4
5
,
∴BC=2ABcosB=2×10×
4
5
=16,
∵BD=6,
∴DC=10,
∴AB=DC,
在△ABD与△DCE中,
∠BAD=∠CDE
∠B=∠C
AB=DC
∴△ABD≌△DCE(ASA).
故②正确,
③当∠AED=90°时,由①可知:△ADE∽△ACD,
∴∠ADC=∠AED,
∵∠AED=90°,
∴∠ADC=90°,
即AD⊥BC,
∵AB=AC,
∴BD=CD,
∴∠ADE=∠B=α且cosα=
4
5
,AB=10,
BD=8.
当∠CDE=90°时,易△CDE∽△BAD,
∵∠CDE=90°,
∴∠BAD=90°,
∵∠B=α且cosα=
4
5
.AB=10,
∴cosB=
AB
BD
=
4
5
,
∴BD=
25
2
.
故③正确.
④易证得△CDE∽△BAD,由②可知BC=16,
设BD=y,CE=x,
∴
AB
DC
=
BD
CE
,
∴
10
16?y
=
y
x
,
整理得:y2-16y+64=64-10x,
即(y-8)2=64-10x,
∴0<x≤6.4.
故④正确.
故答案为:①②③④
以我多年蒙题经验来看 答案应该是 1 2 4
http://www.jyeoo.com/math/ques/detail/c879ecde-2d40-43c7-9861-b7010d966b74
OK?