1+(1⼀根号2)+(1⼀根号3)+(1⼀根号4)+...+(1⼀根号n)<2根号n 用放缩法证明

2024-12-02 17:24:44
推荐回答(1个)
回答1:

证明:原式=1+2/(√2+√2)+2/(√3+√3)+2/(√4+√4)+...2/(√n+√n) <1+2/(√2+√1)+2/(√3+√2)+2/(√4+√3)+...2/(√n+√n-1) =1+2(√2-√1)+2(√3-√2)+2(√4-√3)+...2(√n-√n-1) =1+2(√n-1)=2√n-1<2√n