(1)
因为 cosB = 3/5
所以 sinB = 4/5
根据正弦定理
a/sinA = b/sinB
所以 2/sinA = 4/(4/5)
所以 sinA = 2/5
(2)
S△ABC = acsinB/2 = 4
所以 2c×(4/5)/2 = 4
c = 5
根据余弦定理
b² = a² + c² - 2ac CosB
= 4 + 25 - 2×2×5×(3/5)
= 17
所以 b = √17
f(-x)
= [a^(-x) - 1]/[a^(-x) + 1 ]
= (1 - a^x)/(1 + a^x)
= -f(x)
所以 f(x)是奇函数
f(x)
= (a^x - 1)/(a^x + 1)
= (a^x + 1 - 2)/(a^x + 1)
= 1 - 2/(a^x + 1)
因为 a > 1
所以 a^x > 0
所以 a^x + 1 > 1
所以 0 < 2/(a^x + 1) < 2
所以 -2 < -2/(a^x + 1) < 0
所以 -1 < 1 -2/(a^x + 1) < 1
所以值域是 (-1 ,1)
根据正弦定理,a/sinA=b/sinB,所以 sinA=a*sinB/b=2*sin(5/3)/4=0.0145