超几何分布的期望和方差可以用二项分布的公式去求吗

2024-12-04 18:02:30
推荐回答(1个)
回答1:

期望值有两种方法: 1. 最笨的,也就是把每种情况(就是拿到0,1,2,3,4,5,6,7个指点球)都算出来[超几何分布计算公式:p(x=r)=(Cm r*CN-M n-r)/CNn,"C"是组合数,m与r分别是下标与上标,这里不好打出来]。然后写出概率分布列,将每一纵行的P(x=r)与r相乘,所求结果相加,即可得出期望值。 2. 还有一种就是简单的公式法,E(X)=(n*M)/N [其中x是指定样品数,n为样品容量,M为指定样品总数,N为总体中的个体总数],可以直接求出均值。 方差也有两种算法(都是公式法): 1.这里设期望值为a,那么方差V(X)=(X1-a)^2*P1+(x2-a)^2*P2+...+(Xn-a)*Pn。 2.另一种是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2 [这里同样设a为期望值]