0除以0到底等于多少

2024-11-16 12:29:17
推荐回答(5个)
回答1:

0除以0没有结果。因为除数为0,这个除法算式没有意义。

0不能做除数(分母、后项)的原因:

1:如果除数(分母、后项)是0,被除数是非零正数时,商不存在。这是由于任何数乘0都不会得出非零正数。但一些领域定义为无穷大(∞),因为∞×0被认为能得到非零正数。

2:如果除数(分母、后项)是0,被除数也等于0,也不行,因为任何数乘0都得0,答案有无穷多个,无法定义。

扩展资料:

整数的除法:

(1)从被除数的高位除起;

(2)除数是几位数,就先看被除数的前几位,如果不够除,就要多看一位;

(3)除到哪一位就要把商写在哪一位上面;

(4)每次除得的余数必须比除数小;

(5)求出商的最高位后如果被除数的哪一位上不够商1就在哪一位上写0。

除法运算性质:

(1)若某数除以(或乘)一个数,又乘(或除以)同一个数,则这个数不变。

例如:68÷17×17=68(或68×17÷17=68)。

(2)一个数除以几个数的积,可以用这个数依次除以积里的各个因数。

例如:320÷(2×5×8)=320÷2÷5÷8=4。

回答2:

等于0。在数学上,0除以0是没有意义的。因为任何数乘以0都等于0,所以0除以0可以等于任何数,这在数学上是不能容许的。

被除数扩大(缩小)n倍,除数不变,商也相应的扩大(缩小)n倍。

除数扩大(缩小)n倍,被除数不变,商相应的缩小(扩大)n倍。

被除数连续除以两个除数,等于除以这两个除数之积。有时可以根据除法的性质来进行简便运算。

如:300÷25÷4=300÷(25×4)除以一个数就=这个数的倒数

扩展资料:

0不能做除数(分母、后项)的原因:

1:如果除数(分母、后项)是0,被除数是非零正数时,商不存在。这是由于任何数乘0都不会得出非零正数。但一些领域定义为无穷大(∞),因为∞×0被认为能得到非零正数。

2:如果除数(分母、后项)是0,被除数也等于0,也不行,因为任何数乘0都得0,答案有无穷多个,无法定义。(不定值,NaN)

在数学中,当一级运算(加减)和二级运算(乘除)同时在一个式子中时,它们的运算顺序是先乘除,后加减,如果有括号就先算括号内后算括号外,同一级运算顺序是从左到右,这样的运算叫四则运算。

四则指加法、减法、乘法、除法的计算法则。一道四则运算的算式并不需要一定有四种运算符号,一般指由两个或两个以上运算符号及括号,把多数合并成一个数的运算。

加法: 把两个数合并成一个数的运算/把两个小数合并成一个小数的运算/把两个分数合并成一个分数的运算。

减法: 已知两个加数的和与其中一个加数,求另一个加数的运算。

乘法 :求几个相同加数的和的简便运算。小数乘整数的意义与整数乘法意义相同。一个数乘纯小数就是求这个数的十分之几,百分之几…… 分数乘整数的意义与整数乘法意义相同。

除法: 已知两个因数的积与其中一个因数,求另一个因数的运算。与整数除法的意义相同。

回答3:

0除以0没有结果。因为除数为0,这个除法算式没有意义。,即0是不能作除数的。

已知两个数a,b(b≠0),要求出一个数q,使q与b的积等于a,这种运算称为除法,记为a÷b=q或a∶b=q,读作a除以b等于q,或a比b等于q,a称为被除数,b称为除数,q称为a与b的商,符号“÷”或“∶”称为除号或比号。

除法可以定义为:已知两数的积与其中一因数,求另一个因数的运算。因此,除法还是乘法的逆运算,除法还可以看做是从被除数中连续减去除数,求减去除数的次数的算法。

特别地,对于任意数a,总有a÷1=a,a÷a=1,0÷a=0,但零不能作除数。

将一个数等分成若干份,求每一份是多少的算法称为等分除法;求一个数里包含多少个另一个数,即求一个大数是一个小数的多少倍的算法称为包含除法,只有在大数能被小数整除时才有意义。

扩展资料

整数的除法:

(1)从被除数的高位除起;

(2)除数是几位数,就先看被除数的前几位,如果不够除,就要多看一位;

(3)除到哪一位就要把商写在哪一位上面;

(4)每次除得的余数必须比除数小;

(5)求出商的最高位后如果被除数的哪一位上不够商1就在哪一位上写0。

除法运算性质:

(1)若某数除以(或乘)一个数,又乘(或除以)同一个数,则这个数不变。

例如:68÷17×17=68(或68×17÷17=68)。

(2)一个数除以几个数的积,可以用这个数依次除以积里的各个因数。

例如:320÷(2×5×8)=320÷2÷5÷8=4。

回答4:

在除法中,零不能做除数。因为如果0做除数,那么有两种情况不好解决。一是当被除数也是0时,因为任何数乘0都等于0,所以商不确定。二是当被除数不是0时,由于任何数乘0都不可能等于正整数,所以商不唯一。正是规避上述情况发生,我们规定:在除法中,0不能做除数。

回答5:

0除以0没有结果。因为除数为0,这个除法算式没有意义。

除法可以定义为:已知两数的积与其中一因数,求另一个因数的运算。因此,除法还是乘法的逆运算,除法还可以看做是从被除数中连续减去除数,求减去除数的次数的算法。

特别地,对于任意数a,总有a÷1=a,a÷a=1,0÷a=0,但零不能作除数。

将一个数等分成若干份,求每一份是多少的算法称为等分除法;求一个数里包含多少个另一个数,即求一个大数是一个小数的多少倍的算法称为包含除法,只有在大数能被小数整除时才有意义。

扩展资料

整数的除法:

(1)从被除数的高位除起;

(2)除数是几位数,就先看被除数的前几位,如果不够除,就要多看一位;

(3)除到哪一位就要把商写在哪一位上面;

(4)每次除得的余数必须比除数小;

(5)求出商的最高位后如果被除数的哪一位上不够商1就在哪一位上写0。

除法运算性质:

(1)若某数除以(或乘)一个数,又乘(或除以)同一个数,则这个数不变。

例如:68÷17×17=68(或68×17÷17=68)。

(2)一个数除以几个数的积,可以用这个数依次除以积里的各个因数。

例如:320÷(2×5×8)=320÷2÷5÷8=4。