x趋于0求极限lim2봀-(1+cosx)봀⼀(sin3x)^2

2025-04-14 11:05:07
推荐回答(1个)
回答1:

原式=limx→0 [2-(1+cosx)]/9x^2*limx→0 1/[(√2+√(1+cosx)],(分子有理化,sin3x~3x替换)
=√2/4*limx→0 (1-cosx)/9x^2,
=√2/4*limx→0 sinx/18x,(洛必塔法则求导),
=√2/4*1/18
=√2/72.