y=1/X在点(2,1/2)处的切线方程为x+4y-4=0y=1/X在点(2,1/2)处的法线方程为4x-y-15/2=0析:y的导数=-1/x^2,则在点(2,1/2)处的切线斜率为-1/4则y=1/X在点(2,1/2)处的切线方程为y-1/2=(-1/4)(x-2)整理即得x+4y-4=0切线与法线互相垂直,则在点(2,1/2)处的法线斜率为4y=1/X在点(2,1/2)处的法线方程为y-1/2=4(x-2)整理即得4x-y-15/2=0