1=0.999999999999循环吗?

2024-11-20 12:44:42
推荐回答(5个)
回答1:

这是一道非常著名的问题。我想肯定有人会说不相等。但请相信我和那些说它们相等的同志,他们的的确确是相等的。
证明的方法有很多:

第一种,最简单的:
设x=0.9999999999999……,那么10x=9.99999999999……,得到
10x-x=9
得x=1

第二种,也很简单的:
设x=0.999999999999……,那么x/3=0.333333333333……=1/3,得
x/3=1/3
x=1

第三种,稍微要绕一点脑筋:
你用竖式计算1除以1(竖式应该会吧,小学学过的),不同的是一开始不要直接商1,而要商0,那么余数是1,添加一个0变成10,然后商9,10-9=1,又得到余数是1,再按照上面的方法进行计算,就会算出来1/1=0.9999999……

第四种,可以用极限来做:
等比数列的求和公式是[a1(1-q^n)]/(1-q),那么当q<1且n->无穷大的时候,这个式子的极限就是a1/(1-q)。由于循环小数0.aaaaaaaaa……=a/10+a/100+a/1000+a/10000+……,它的每一个加数刚好构成一个无穷的等比数列,而且q=1/10,那么就可以用a1/(1-q)计算0.99999999……,此时a1=0.9,q=1/10,很容易就可以得到0.9999999999……=0.9/(1-1/10)=1

以上就是常见的证明0.99999999999……=1的方法。方法还有很多种。最后结果都是:0.999999999……=1。

另外,我还可以明确地告诉你,以上的推理过程都是比较严密的,不要相信所谓的0.3333333333……只是约等于1/3,0.9999999999……<1。至少在我们所使用的数学中,0.999999999……=1。

你也可以在百度上查找有关的资料,特别是百度知道上有过这种争论。

最后,我在明确地告诉你,同时也是告诉所有看过这些话的人,0.999999999999999……=1。

回答2:

如果你生在古代 那么你将会成为极限思想的发明者!
你说的是对的 0.999999……的确等于1 这是极限的思想
还有一种证法 设0.9999……=x
两边乘10有 9.9999……=10x
则9+0.99999……=10x
9+x=10x
9x=9
x=1

回答3:

0.99999999999......=1
只要你学了“无穷递缩比数列”你就知道。
举个例子:
0.33333333=3分之1
同乘以3
则0.9999999......=1

回答4:

现在是着样算不 不准 无现呀
1/3=0.3循环不对差0.0000000.......1

回答5: