C++难题,急求解答,谢谢!

2025-04-13 02:46:58
推荐回答(1个)
回答1:

你这个题目实现不难,分数的四则运算,最重要的是要有一步化简,将分子和分母中的最大公约数消去。这样才不会造成分子分母值越算越大,最后超限。正好最近在看数论,就帮你实现一个吧。

#include

unsigned int gcd(int i, int j)
{
//欧几里德法求最大公约数
unsigned s = std::max(std::abs(i), std::abs(j));
unsigned t = std::min(std::abs(i), std::abs(j));
while (true) {
if (t == 0) return s;
if (t == 1) return 1;
unsigned r = s % t;
s = t;
t = r;
}
}

class zrf_Ratio
{
int num;
int den;
public:
zrf_Ratio(int _num, int _den) : num(_num), den(_den) {
//在构造里就化简分式
int d = gcd(num, den);
num /= d;
den /= d;
}
friend std::ostream& operator<<(std::ostream& os, const zrf_Ratio& r);
friend zrf_Ratio operator-(const zrf_Ratio& r);
friend zrf_Ratio operator+(const zrf_Ratio& l, const zrf_Ratio& r);
friend zrf_Ratio operator-(const zrf_Ratio& l, const zrf_Ratio& r);
friend zrf_Ratio operator*(const zrf_Ratio& l, const zrf_Ratio& r);
friend zrf_Ratio operator/(const zrf_Ratio& l , const zrf_Ratio& r);
};

std::ostream& operator<<(std::ostream& os, const zrf_Ratio& r)
{
return os<}
zrf_Ratio operator-(const zrf_Ratio& r)
{
return zrf_Ratio(-1 * r.num, r.den);
}
zrf_Ratio operator+(const zrf_Ratio& l, const zrf_Ratio& r)
{
return zrf_Ratio(l.num * r.den + r.num * l.den, l.den * r.den);
}
zrf_Ratio operator-(const zrf_Ratio& l, const zrf_Ratio& r)
{
return zrf_Ratio(l.num * r.den - r.num * l.den, l.den * r.den);
}
zrf_Ratio operator*(const zrf_Ratio& l, const zrf_Ratio& r)
{
return zrf_Ratio(l.num * r.num, l.den * r.den);
}
zrf_Ratio operator/(const zrf_Ratio& l , const zrf_Ratio& r)
{
return zrf_Ratio(l.num * r.den, l.den * r.num);
}

int main()
{
zrf_Ratio r0(5, 6), r1(7, 8);// r0 = 5/6, r1 = 7/8
std::cout<<-r0< std::cout<<(r0 + r1)< std::cout<<(r0 - r1)< std::cout<<(r0 * r1)< std::cout<<(r0 / r1)<}

怎么样,要不要多加点儿分啊。